リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Optimization of an Atmospheric-Pressure Plasma Source for Biomedical and Environment Applications」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Optimization of an Atmospheric-Pressure Plasma Source for Biomedical and Environment Applications

Nguyen Tran Trung 大阪府立大学 DOI:info:doi/10.24729/00017857

2022.11.28

概要

Figure 1.1 shows the states of matter, including the plasma state, is shown with their known transitions. As temperature increases, molecules start to be more energetic which leads to the matter transformation. The supply of energy affects the motion of molecules. As the energy of the moving molecules overcomes the molecular attraction forces, the matter will change its state from solid to liquid to gas. When the energy supply proceeds intense collision processes among the constituents occur. The atoms themselves begin to break down: electrons are stripped from their orbit causing the atom to become a positively charged ion. The resulting mixture of neutral atoms, free electrons, and charged ions is called plasma.

In terms of electron density, 𝑛𝑒 , degree of ionization (ratio of electron to neutral particle density, 𝑛𝑒 𝑁 ), and the average energy of the electrons (𝑇𝑒 : electron temperature, 𝑇𝑖𝑜𝑛: ion temperature, 𝑇𝑔 : gas temperature) or thermodynamic equilibrium state, plasmas are generally divided into two main groups: high-temperature plasmas and low-temperature plasmas. Low-temperature plasmas are further subdivided into thermal plasma and non-thermal plasma. Table 1.1 shows the typical classification of different kinds of plasmas and an overview of the main characteristics.

In the gas discharge very complex physical and chemical processes occur simultaneously which are described by means of various elementary processes [4]. The reactivity of plasma is reached by ionization of particles. Hence, for the generation of plasma the ionization of neutral atoms and/or molecules of the medium is the key process [4]. Ionization occurs by collisions of energetic particles, by ionizing radiation, or by the impact of electric fields on electrons. The degree of ionization is defined as the density of the charged particles in the plasma. High-temperature plasma (HTP) is completely ionized plasma; the ionization degree is close to unity. Furthermore, the average energies of neutral and/or charged particles in plasma and their relevant translational, rotational, or vibrational degrees of freedom can be used to measure the temperature of plasma including ions, electrons and gas [4]. Temperature of electrons is equal to the temperature of the heavy particles in HTP. 𝑇𝑔 in HTP can be as high as 109 𝐾. This is typically the temperature of solar plasma or magnetic confinement fusion. Species produced in HTP are in thermal equilibrium, hence electrons and heavy ions have high temperatures.

この論文で使われている画像

参考文献

Chapter1

[1] I. Langmuir, “Oscillations in ionized gases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 14, pp. 627-637, 1928.

[2] F. Chen and A. Trivelpiece, “Introduction to plasma physics,” PhysicsToday, vol. 29, no. 10, p. 54, 1976, doi:10.1063/1.3024417.

[3] A.L. Rotch, “The lightning-rod coincident with Franklin’s kite experiment,” Science, vol. 24, no. 624, p. 780, 1906, doi:10.1126/science.24.624.780.b.

[4] A. Fridman, “Plasma Chemistry,” Cambridge University Press., ISBN 13-978-0-521-84735-3, 2008.

[5] R. Hippler, H. Kersten, M. Schmidt, and K.H. Schoenbach, “Low temperature plasmas: fundamentals, technologies and techniques,” WileyVch, Plasmas physics, vol. 1, ISBN: 978-3-527-40673-9, 2008.

[6] U. Kogelschatz, B. Eliasson, and W. Egli, “From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges,” Pure and Applied Chemistry, vol. 71, no. 10, pp. 1819–1828, 1999, doi:10.1351/pac199971101819.

[7] U. Kogelschatz, “Dielectric-barrier discharges: their history, discharge physics, and industrial applications,” Plasma chemistry and plasma processing, vol. 23, no. 1, pp.1–46, 2003, doi:10.1023/A:1022470901385.

[8] M.A. Lieberman and A.J. Lichtenberg, “Principles of plasma discharges and materials processing,” MRS Bulletin, vol. 30, pp. 899–901, 1994.

[9] Y.P. Raizer, V.I. Kisin, and J.E. Allen, “Gas discharge physics,” Springer-Verlag Berlin, vol. 1, ISBN-10: 3540194622, 1991.

[10] S. Eliezer and Y. Eliezer, “The fourth state of matter: an introduction to plasma science,” CRC Press, ISBN-10: 0750307404, 2001.

[11] M.A. Lieberman and A.J. Lichtenberg, “Principles of plasma discharges and materials processing,” John Wiley & Sons, ISBN: 978-0-471-72001-0, 2005.

[12] A. Fridman and L.A. Kennedy, “Plasma physics and engineering,” CRC press, ISBN: 9780429190766, 2004.

[13] National Research Council, Plasma Science Committee, Plasma 2010 Committee, et al., “Plasma science: advancing knowledge in the national interest,” National AcademiesPress, Vol. 3, 2008.

[14] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectroc. Acta Pt. B-Atom. Spectr., vol. 61, no. 1, pp. 2-30, 2006, doi: 10.1016/j.sab.2005.10.003.

[15] B. Eliasson, and U. Kogelschatz, “Nonequilibrium Volume Plasma Chemical Processing,” IEEE Trans. Plasma Sci., vol. 19, no. 6, pp. 1063-1077, 1991, doi:10.1109/27.125031.

[16] J. Meichsner, A. Dinklage, T. Klinger, G. Marx et al., “Plasma Physics: Confinement, Transport and Collective Effects,” Berlin Heidelberg: Springer, ISBN 10: 3540315217, 2005.

[17] K.H. Becker, U. Kogelschatz, K.H. Schoenbach, and R.J. Barker, “Non-Equilibrium Air Plasmas at Atmospheric Pressure,” London: IOP Publishing, ISBN: 9780429175084, 2005.

[18] A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, “Gas discharge plasmas and their applications,” Spectroc. Acta Pt. B-Atom. Spectr., vol. 57, no. 4, pp. 609-658, 2002, doi:10.1016/S0584-8547(01)00406-2.

[19] R. d'Agostino, P. Favia, C. Oehr, and M.R. Wertheimer, “Low-temperature plasma processing of materials: Past, present, and future,” Plasma Process. Polym., vol. 2, no. 1, pp. 7-15, 2005, doi: 10.1002/ppap.200400074.

[20] J. Friedrich, “The Plasma Chemistry of Polymer Surfaces - Advanced Techniques for Surface Design,” Weinheim: Wiley-VCH Verlag GmbH, ISBN: 978-3-527-64800-9, 2012.

[21] M.T. Elford, “The ratio DT/µ for electrons in water vapour at 294 K,” Aust. J. Phys., vol. 48, pp. 427– 437, 1995, doi:10.1071/PH950427.

[22] B.R. Locke, M. Sato, P. Sunka, M.R. Hofman and J.S. Chang, “Electrohydrolic discharge and nonthermal plasma for water treatment,” Ind. Eng. Chem. Res., vol. 45, pp. 882–905, 2006, doi:10.1021/ie050981u.

[23] M. Moravej et al., “Physics of high-pressure helium and argon radio-frequency plasmas,” In: Journal of applied physics, vol. 96, no.12, pp. 7011–7017, 2004, doi:10.1063/1.1815047.

[24] H.B. Smith, C. Charles, and R.W. Boswell, “Breakdown behavior in radio-frequency argon discharges,” In: Physics of Plasmas, vol.10, no.3, pp. 875–881, 2003, doi:10.1063/1.1531615.

[25] V. Nehra, A. Kumar, and H.K. Dwivedi, “Atmospheric Non-Thermal Plasma Sources,” Int. J. Eng., vol. 2, no. 1, pp. 53-68, 2008.

[26] R.S. Sigmond, “Simple approximate treatment of unipolarspace-charge-dominated coronas: the Warburg law and the saturation current,” J. Appl. Phys., vol. 53, pp. 891-898, 1982, doi:10.1063/1.330557.

[27] M. Robinson, “Movement of air in the electric wind of the corona discharge,” Trans. Am. Inst. Electr. Eng. Part I Commun. Electron., vol. 80, pp. 143-150, 1961, doi:10.1109/TCE.1961.6373091.

[28] P. Giubbilini, “The current-voltage characteristics of point-to-ring corona,” J.Appl. Phys., vol. 64, pp. 3730-3732, 1988, doi:10.1063/1.341368.

[29] J.H.C. de Souza and J.L. Ferreira, “Development of a Corona Discharge Plasma Source for Sterilization Procedures at Atmospheric Pressure,” IEEE International Conference on Plasma Science - Abstracts, p. 1, 2009, doi:10.1109/PLASMA.2009.5227454.

[30] J.S. Chang, P. Lawless and T. Yamamoto, “Corona discharge processes,” IEEE Trans. Plasma Sci., vol. 19, no. 6, pp. 1152-1166, Dec. 1991, doi:10.1109/27.125038.

[31] F. Feng, L. Ye, J. Liu, and K. Yan, “Non-thermal plasma generation by using back corona discharge on catalyst,” Journal of Electrostatics, Vol. 71, No. 3, pp. 179-184, 2013, doi.org/10.1016/j.elstat.2012.11.034.

[32] K. Yamada, “An empirical formula for negative corona discharge current in point-grid electrode geometry,” J. Appl. Phys., vol. 96, pp. 2472-2475, 2004, doi:10.1063/1.1775301.

[33] W. Siemens, “Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten,” Poggendorfs Ann. Phys. Chem., vol. 102, pp. 66–122, 1857, doi:10.1002/andp.18571780905.

[34] Valentin I Gibalov and Gerhard J Pietsch, “Dynamics of dielectric barrier discharges in different arrangements,” Plasma Sources Sci. Technol., vol. 21, no. 02, p. 4010, 2012, doi:10.1088/0963- 0252/21/2/024010.

[35] J. Kim, S. Kim, Y.N. Lee, I.T. Kim, and G. Cho, “Discharge Characteristics and Plasma Erosion of Various Dielectric Materials in the Dielectric Barrier Discharges,” Appl. Sci., vol. 8, p. 1294. 2018, doi:10.3390/app8081294.

[36] F. Massines, A. Rabehi, P. Decomps, R.B. Gadri, P. Ségur, and C. Mayoux, “Experimental and Theoretical Study of a Glow Discharge at Atmospheric Pressure Controlled by a Dielectric Barrier,” J. Appl. Phys., vol. 8, p. 2950, 1998, doi:10.1063/1.367051.

[37] U. Kogelschatz, B. Eliasson, and W. Egli, “Dielectric-Barrier Discharges: Principle and Applications,” J. Physique IV., vol. 7, pp.C4-47-C4-66, 1997, doi:ff10.1051/jp4:1997405ff.ffjpa-00255561f.

[38] U. Kogelschatz, "Filamentary, patterned, and diffuse barrier discharges," in IEEE Transactions on Plasma Science, vol. 30, no. 4, pp. 1400-1408, Aug. 2002, doi:10.1109/TPS.2002.804201.

[39] R. Brandenburg, “Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments,” Plasma Sources Sci. Technol., vol. 26, no. 05, p. 3001, 2017, doi:10.1088/1361-6595/aa6426.

[40] M. Laroussi, “Low Temperature Plasma Jets: Characterization and Biomedical Applications,” Plasma, vol. 3, no. 2, pp. 54-58, 2020, doi:10.3390/plasma3020006.

[41] M. Laroussi, X. Lu, “Room temperature atmospheric pressure plasma plume for biomedical applications,” Appl. Phys. Lett., vol. 87, no. 11, p. 3902, 2005, doi:10.1063/1.2045549.

[42] G. Chen, S. Chen, M. Zhou, W. Feng, W. Gu, and S. Yang, “The preliminary discharging characterization of a novel APGD plume and its application in organic contaminant degradation,” Plasma Sources Sci. Technol., vol. 15, no. 4, p. 603, 2006, doi:10.1088/0963-0252/15/4/002.

[43] A. Shashurin, M. Keidar, S. Bronnikov, R.A. Jurjus, and M.A. Stepp, “Living tissue under treatment of cold plasma atmospheric jet” Appl. Phys. Lett., vol. 93, no. 18, p. 1501, 2008, doi:10.1063/1.3020223.

[44] M. Teschke, J. Kedzierski, E. G. Finantu-Dinu, D. Korzec and J. Engemann, "High-speed photographs of a dielectric barrier atmospheric pressure plasma jet," in IEEE Transactions on Plasma Science, vol. 33, no. 2, pp. 310-311, April 2005, doi:10.1109/TPS.2005.845377.

[45] X. Lu, and M. Laroussi, “Dynamics of an Atmospheric Pressure Plasma Plume Generated by Submicrosecond Voltage Pulses,” J. Appl. Phys., vol. 100, no. 06, p. 3302, 2006, doi:10.1063/1.2349475.

[46] N. Mericam-Bourdet, M. Laroussi, A. Begum, and E. Karakas, “Experimental Investigations of Plasma Bullets,” J. Phys. D: Appl. Phys., vol. 42, no. 05, p. 5207, 2009, doi:10.1088/0022-3727/42/5/055207.

[47] B.L. Sands, B.N. Ganguly, and K. Tachibana, “A Streamer-like Atmospheric Pressure Plasma Jet,” Appl. Phys. Lett., vol. 92, no. 15, p. 1503, 2008, doi:10.1063/1.2909084.

[48] J.L. Walsh, and M.G. Kong, “Contrasting Characteristics of Linear-field and Cross-field Atmospheric Plasma Jets,” Appl. Phys. Lett., vol. 93, no. 11, p. 1501, 2008, doi:10.1063/1.2982497.

[49] Q. Xiong, X. Lu, J. Liu, Y. Xian, Z. Xiong, F. Zou, C. Zou, W. Gong, J. Hu, K. Chen, X. Pei, Z. Jiang, and Y. Pan, “Temporal and Spatial Resolved Optical Emission Behaviors of a Cold Atmospheric Pressure Plasma Jet,” J. Appl. Phys., vol. 106, no. 08, p. 3302, 2009, doi:10.1063/1.3239512.

[50] E. Karakas, M. Koklu, and M. Laroussi, “Correlation between helium mole fraction and plasma bullet propagation in low temperature plasma jets,” J. Phys. D: Appl. Phys., vol. 43, no. 15, p. 5202, 2010, doi:10.1088/0022-3727/43/15/155202.

[51] X. Lu, G. Naidis, M. Laroussi, and K. Ostrikov, “Guided Ionization Waves: Theory and Experiments,” Physics Reports, vol. 540, no. 3, pp. 123-166, 2014, doi:10.1016/j.physrep.2014.02.006.

[52] A. Begum, M. Laroussi, and M.R. Pervez, “Atmospheric Pressure helium/air plasma Jet: Breakdown Processes and Propagation Phenomenon,” AIP Advances, vol. 3, no. 06, p. 2117, 2013, doi: 10.1063/1.4811464.

[53] E. Wagenaars et al., “Two-photon absorption laser-induced fluorescence measurements of atomic nitrogen in a radio-frequency atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol., vol. 21, no. 04, p. 2002, 2012, doi:10.1088/0963-0252/21/4/042002.

[54] J. Furmanski, J. Y. Kim and S. Kim, "Triple-Coupled Intense Atmospheric Pressure Plasma Jet from Honeycomb Structural Plasma Device," in IEEE Transactions on Plasma Science, vol. 39, no. 11, pp. 2338- 2339, Nov. 2011, doi: 10.1109/TPS.2011.2119332.

[55] H.M. Joh, S.J. Kim, T.H. Chung, and S.H. Leem, "Comparison of the characteristics of atmospheric pressure plasma jets using different working gases and applications to plasma-cancer cell interactions", AIP Advances, vol. 3, no. 09, p. 2128, 2013, doi:10.1063/1.4823484.

[56] V. Horvatic, C. Vadla, J. Franzke, “Discussion of fundamental processes in dielectric barrier discharges used for soft ionization,” Spectrochimica Acta Part B., vol. 100, p. 52–61, 2014, doi: 10.1016/j.sab.2014.08.010.

[57] M. Laroussi, and T. Akan, “Arc-free atmospheric pressure cold plasma jets: A review,” Plasma Process. Polym., vol. 4, no. 9, pp. 777-788, 2007, doi:10.1002/ppap.200700066.

[58] G.Y. Park, S.J. Park, M.Y. Choi, I.G. Koo, J.H. Byun, J.W. Hong, J.Y. Sim, G.J. Collins, and J.K. Lee, “Atmospheric-pressure plasma sources for biomedical applications,” Plasma Sources Sci. Technol., vol. 21, no. 4, p. 3001, 2012, doi:10.1088/0963-0252/21/4/043001.

[59] R. d'Agostino, P. Favia, Y. Kawai, H. Ikegami, N. Sato, and F. Arefi-Khonsari, “Advanced Plasma Technology,” Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, ISBN: 978-3-527-40591-6, 2008.

[60] S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, J.P. Boeuf, T.J. Sommerer, M.J. Kushner, U. Czarnetzki, and N. Mason, “The 2012 Plasma Roadmap,” J. Phys. D-Appl. Phys., vol. 45, no. 25, p. 3001, 2012, doi:10.1088/0022-3727/45/25/253001.

[61] M. Laroussi, and A. Fridman, “Plasma Medicine,” Plasma Process. Polym., vol. 5, no. 6, pp. 501-501, 2008, doi:10.1002/ppap.200800094.

[62] M. Keidar, “Plasma for cancer treatment,” Plasma Sources Sci Technol., vol. 24, no. 03, p. 3001, 2015, doi:10.1088/0963-0252/24/3/033001.

[63] D.B. Graves, “Low temperature plasma biomedicine: A tutorial review,” PhysPlasmas., vol. 21, no. 08, p. 0901, 2014, doi:10.1063/1.4892534.

[64] A. Privat-Maldonado, A. Schmidt, A. Lin, K.D. Weltmann, K. Wende, A. Bogaerts, and S. Bekeschus, “ROS from physical plasmas: Redox chemistry for biomedical therapy,” Oxid. Med. Cell Longevity., vol. 2009, 2019, doi:10.1155/2019/9062098.

[65] B. Yang, J.R. Chen, Q.S. Yu, H. Li, M.S. Lin, A. Mustapha, L.A. Hong, Y. Wang, “Oral bacterial deactivation using a low-temperature atmospheric argon plasma brush,” J Dent, vol. 39, no. 1, pp. 48-56, 2011, doi:10.1016/j.jdent.2010.10.002.

[66] C. Hoffmann, C. Berganza, J. Zhang, “Cold Atmospheric Plasma: methods of production and application in dentistry and oncology,” Medical gas research, vol. 3, no. 1, p. 21, 2013, doi:10.1186/2045-9912-3-21.

[67] X.M. Yao, N. Jiang, B.F. Peng, H. Guo, N. Lu, K.F. Shang, J. Li, Y. Wu, “Characteristics of a corona discharge ignited by a MgO/NiO/Ni sandwich cathode with high secondary electron emission for VOC degradation,” Journal of Physics D: Applied Physics, vol. 51, no. 43, p. 5201, 2018, doi:10.1088/1361- 6463/aadddd.

[68] M. Kaiser, R. Emmerich, H. Urban, M. Joos, P. Elsner, “Bifocal plasma source for treatment of gaseous pollutants,” Surf Coat Technol., vol. 174-175, pp. 498-502, 2003, doi:10.1016/S0257-8972(03)00622-4.

[69] E. Odic, L. Parissi, A. Goldman, M. Goldman, J. Amouroux, “Depollution processes correlated to temperature control in non-equilibrium plasmas. Application to the removal of volatile organic compounds,” New York: Begell House, Inc; ISBN Imprimer:1-56700-126-2, 1999.

[70] H.R. Khaledian, P. Zolfaghari, V. Elhami, M. Aghbolaghy, S. Khorram, A. Karimi, A. Khataee, “Modification of Immobilized Titanium Dioxide Nanostructures by Argon Plasma for Photocatalytic Removal of Organic Dyes,” Molecules, vol. 24, no. 3, p. 19, 2019, doi:10.3390/molecules24030383.

[71] C. Sarangapani, D. Ziuzina, P. Behan, D. Boehm, B.F. Gilmore, P.J. Cullen, P. Bourke, “Degradation kinetics of cold plasma-treated antibiotics and their antimicrobial activity,” Scientific Reports, vol. 9, no. 3955, 2019, doi:10.1038/s41598-019-40352-9.

[72] A. Kramer, S. Bekeschus, R. Matthes, C. Bender, M.B. Stope, M. Napp, O. Lademann, J. Lademann, K.D. Weltmann, and F. Schauer, “Cold Physical Plasmas in the Field of Hygiene-Relevance, Significance, and Future Applications,” Plasma Process. Polym., vol. 12, no. 12, pp. 1410-1422, 2015, doi: 10.1002/ppap.201500170.

[73] W. Niessen, O. Wolf, R. Schruft, M. Neiger, “The influence of ethene on the conversion of NOx in a dielectric barrier discharge,” Journal of Physics D: Applied Physics, vol. 31, no. 5, p. 542, 1998, doi: 10.1088/0022-3727/31/5/011.

[74] H. Miessner, K.P. Francke, R. Rudolph, “Plasma-enhanced HC-SCR of NOx in the presence of excess oxygen,” Appl Catal B-Environ, vol. 36, no. 1, p. 53, 2002, doi:10.1016/S0926-3373(01)00280-6.

[75] P. Murugesan, J.A. Moses, C. Anandharamakrishnan, “Water decontamination of using non-thermal plasma: Concepts, applications, and prospects,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104377, 2020, doi: 10.1016/j.jece.2020.104377.

[76] R. Khan, P. Bhawana, M.H. Fulekar, “Microbial decolorization and degradation of synthetic dyes: A review,” Rev. Environ. Sci.Biol. Technol., vol. 12, pp. 75–97, 2013, doi:10.1007/s11157-012-9287-6.

[77] C.G. Okpara, N.F. Oparaku, C.N. Ibeto, “An overview of water disinfection in developing countries and potentials of renewable energy,” J. Environ. Sci. Technol., vol. 4, no. 1, pp. 18–30, 2011, doi: 10.3923/jest.2011.18.30.

[78] M. Mehrjouei, S. Müller, D. Möller, “A review on photocatalytic ozonation used for the treatment of water and wastewater,” Chem.Eng. J., vol. 263, pp. 209–219, 2015, doi:10.1016/j.cej.2014.10.112.

[79] K. Ellis, W.E. Wood, “Slow sand filtration,” Crit. Rev. Environ. Sci. Technol., vol. 15, pp. 315–354. 1985, doi:10.1080/10643388509381736.

[80] J.D. Burch, K.E. Thomas, “Water disinfection for developing countries and potential for solar thermal pasteurization,” Sol. Energy., vol. 64, pp. 87–97, 1998, doi:10.1016/S0038-092X(98)00036-X.

[81] M.A. Lazar, S. Varghese, S.S. Nair, “Photocatalytic water treatment by titanium dioxide: Recent updates,” Catalysts, vol. 2, no. 4, pp. 572–601, 2012, doi:10.3390/catal2040572.

[82] D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, “Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review,” Water Res., vol. 139, no. 1, pp. 118–131, 2018, doi:10.1016/j.watres.2018.03.042.

[83] S. Ben Fredj, R.T. Novakoski, C. Tizaoui, L. Monser, “Two-phase ozonation for the removal of estrone, 17β-estradiol and 17α-ethinylestradiol in water using ozone-loaded decamethylcyclopentasiloxane,” Ozone: Science & Engineering, vol. 39, no. 5, pp. 343-356, 2017, doi:10.1080/01919512.2017.1322896.

[84] A. Leray, A. Guy, M. Makarov, K. Lombaert, J.M. Cormier, A. Khacef, “Plasma-Assisted Diesel Oxidation Catalyst on Bench Scale: Focus on Light-off Temperature and NOx Behavior,” Topics in Catalysis, vol. 56, no. 1-8, p. 222. 2013, doi:10.1007/s11244-013-9956-x.

[85] C. Barakat, P. Gravejat, O. Guaitella, F. Thévenet, A. Rousseau, “Oxidation of isopropanol and acetone adsorbed on TiO2 under plasma generated ozone flow: Gas phase and adsorbed species monitoring,” Applied Catalysis B: Environmental, vol. 147, no. 5, pp. 302-313, 2014, doi:10.1016/j.apcatb.2013.09.008.

[86] Z. Jia, X. Wang, E. Foucher, F. Thevenet, A. Rousseau, “Plasma-catalytic mineralization of toluene adsorbed on CeO2,” Catalysts, vol. 8, no. 8, p. 303, 2018, doi:10.3390/catal8080303.

[87] X. Wang, M. Romanias, F. Thévenet, A. Rousseau, “Geocatalytic uptake of ozone onto natural mineral dust,” Catalysts, vol. 8, no. 7, p. 263, 2018, doi:10.3390/catal8070263.

[88] H. Zhuang, M.J. Rothrock, K.L. Hiett, K.C. Lawrence, G.R. Gamble, B.C. Bowker, K.M. Keener, “InPackage Air Cold Plasma Treatment of Chicken Breast Meat: Treatment Time Effect,” Journal of Food Quality, vol. 2019, 2019, doi:10.1155/2019/1837351.

[89] L. Ling, L. Jiangang, S. Minchong, Z. Chunlei, D. Yuanhua, “Cold plasma treatment enhances oilseed rape seed germination under drought stress,” Scientific reports, vol. 5, no. 13033, 2015, doi:10.1038/srep13033.

[90] W. Wang, H. Zheng, C. Fan, J. Li, J. Shi, Z. Cai, G. Zhang, D. Liu, J. Zhang, S. Vang, “High rate of chimeric gene origination by retroposition in plant genomes,” The Plant Cell, vol. 18, no. 8, p. 1791, 2006, doi:10.1105/tpc.106.041905.

[91] F. Judée, S. Simon, T. Dufour, “Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms,” Water Res., vol. 33, no. 15, pp. 47-590, 2018, doi:10.1016/j.watres.2017.12.035.

[92] B. Surowsky, A. Fischer, O. Schlueter, D. Knorr, “Cold plasma effects on enzyme activity in a model food system,” Innovative Food Science & Emerging Technologies, vol. 19, p. 146, 2013, doi: 10.1016/j.ifset.2013.04.002.

[93] D.P. Park, K. Davis, S. Gilani, C.A. Alonzo, D. Dobrynin, G. Friedman, A. Fridman, A. Rabinovich, G. Fridman, “Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield,” Current Applied Physics, vol. 13, p. S19, 2013, doi:10.1016/j.cap.2012.12.019.

[94] P. Bourke, D. Ziuzina, D. Boehm, P.J. Cullen, K. Keener, “The Potential of Cold Plasma for Safe and Sustainable Food Production,” Trends in biotechnology, vol. 36, no. 15, p. 615, 2018, doi:10.1016/j.tibtech.2017.11.001.

[95] S. Pankaj, N. Misra, P. Cullen, “Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge,” Innovative Food Science & Emerging Technologies, vol. 19, p. 153, 2013, doi:10.1016/j.ifset.2013.03.001.

Chapter2

[1] T. H. MartinA. H. GuentherM. Kristiansen, “J.C. Martin on Pulsed Power,” New York: Plenum, ISBN: 978-1-4899-1561-0, 1996.

[2] M.R. Webb and G.M. Hieftje, Spectrochemical analysis by using discharge devices with solution electrodes,” Anal. Chem., vol. 81, no. 3, p. 862, 2009, doi: 10.1021/ac801561t.

[3] M. Smoluch, P. Mielczarek and J. Silberring, “Plasma-based ambient ionization mass spectrometry in bionanalytical sciences,” Mass Spectrom. Rev., vol. 35, pp. 22–34, 2016, doi:10.1002/mas.21460.

[4] J. Foster, B. S. Sommers, S. N. Gucker, I. M. Blankson and G. Adamovsky, "Perspectives on the Interaction of Plasmas with Liquid Water for Water Purification," in IEEE Transactions on Plasma Science, vol. 40, no. 5, pp. 1311-1323, May 2012, doi: 10.1109/TPS.2011.2180028.

[5] D. Mariotti, J. Patel, V. Svrcek and P. Maguire, “Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering,” Plasma Proc. Polym., vol. 9, p. 1074–85, 2012, doi:10.1002/ppap.201200007.

[6] T. Ishijima, K. Nosaka, Y. Tanaka, Y. Uesugi, Y. Goto and H. Horibe, “A high-speed photoresist removal process using mutibubble microwave plasma under a mixture of multiphase plasma environment,” Appl. Phys. Lett., vol. 103, no. 14, p.2101, 2013, doi:10.1063/1.4823530.

[7] J.F. Friedrich, N. Mix, R.D. Schulze, A. Meyer-Plath, R. Ranjit Joshi and S. Wettmarshausen, “New plasma techniques for polymer surface modification with monotype functional groups,” Plasma Proc. Polym., vol. 5, pp. 407–23, 2008, doi:10.1002/ppap.200700145.

[8] P.K. Chu, X. (Eds.). Lu, “Low Temperature Plasma Technology: Methods and Applications (1st ed.),” CRC Press., 2013, doi:10.1201/b15153.

[9] M. Sato, T. Ohgiyama and J. S. Clements, "Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water," in IEEE Transactions on Industry Applications, vol. 32, no. 1, pp. 106-112, Jan.-Feb. 1996, doi: 10.1109/28.485820.

[10] S. Samukawa et al., “The 2012 plasma roadmap,” J. Phys. D: Appl. Phys., vol. 45, no. 25, p. 3001–37, 2012, doi:10.1088/0022-3727/45/25/253001.

[11] P.J. Bruggeman et al., “Plasma–liquid interactions: a review and roadmap,” Plasma Sources Sci. Technol., vol. 25, no. 05, p. 3002, 2016, doi:10.1088/0963-0252/25/5/053002.

[12] M. Laroussi, "Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects," in IEEE Transactions on Plasma Science, vol. 30, no. 4, pp. 1409-1415, Aug. 2002, doi: 10.1109/TPS.2002.804220.

[13] G.A. Somorjai, “Principles of Surface Chemistry (Fundamental Topics in Physical Chemistry),” Prentice-Hall, Inc, Englewood Cliffs, NJ, ISBN-10: 0137106084, 1972.

[14] G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets and A. Fridman, “Applied plasma medicine,” Plasma Proc. Polym., vol. 5, pp. 503–33, 2008, doi:10.1002/ppap.200700154.

[15] M. Chatraie, G. Torkaman, M. Khani, H. Salehi, and B. Shokri, “In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment,” Scientific reports, vol. 8, no. 1, p. 5621, 2018, doi:10.1038/s41598-018-24049-z.

[16] S. Arndt, P. Unger, E. Wacker, T. Shimizu, J. Heinlin, Y.F. Li, H.M. Thomas, G.E. Morfill, J.L. Zimmermann, A.K. Bosserhoff, “Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo,” PloS one, vol. 8, no. 11, p. e79325, 2013, doi:10.1371/journal.pone.0079325.

[17] X. Lu, M. Laroussi and V. Puech, “On atmospheric-pressure non-equilibrium plasma jets and plasma bullets,” Plasma Source Sci. Technol., vol. 21, no. 03, p. 4005, 2012, doi:10.1088/0963-0252/21/3/034005.

[18] F. Iza, G.J. Kim, S.M. Lee, J.L. Walsh, Y.T. Zhang and M.G. Kong, “Microplasmas: sources, particle kinetics, and biomedical applications Plasma,” Proc. Polym., vol. 5, pp. 322–44, 2008, doi:10.1002/ppap.200700162.

[19] G. Uchida, A. Nakajima, T. Ito, K. Takenaka, T. Kawasaki, K. Koga, M. Shiratani, Y. Setsuhara, “Effects of nonthermal plasma jet irradiation on the selective production of H2O2 and NO2- in liquid water,” Journal of Applied Physics, vol. 120, no. 20, p. 3302, 2016, doi:10.1063/1.4968568.

[20] E. Stoffels, A.J. Flikweert, W.W. Stoffels and G.M. W. Kroesen, “Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials,” Plasma Source Sci. Technol., vol. 11, no. 4, p. 383, 2002, doi:10.1088/0963-0252/11/4/304.

[21] J.F. Kolb, A.A.H. Mohamed, R.O. Price, R.J. Swanson, A. Bowman, R.L. Chiavarini, M. Stacey and K.H. Schoenbach, “Cold atmospheric pressure air plasma jet for medical applications,” Appl. Phys. Lett., vol. 92, no. 24, p. 1501, 2008, doi:10.1063/1.2940325.

[22] J.L. Walsh and M.G. Kong, “Contrasting characteristics of linear and cross-field atmospheric pressure plasma jets,” Appl. Phys. Lett., vol. 93, no. 11, p. 1501, 2008, doi:10.1063/1.2982497.

[23] B.T.J. van Ham, S. Hofmann, R. Brandenburg and P.J. Bruggeman, “In situ absolute air, O3, and NO densities in the effluent of a cold RF argon atmospheric pressure plasma jet obtained by molecular beam mass spectrometry,” J. Phys. D: Appl. Phys., vol. 47, no. 22, p. 4013, 2014, doi:10.1088/0022- 3727/47/22/224013.

[24] S.A. Norberg, W. Tian, E. Johnsen and M.J. Kushner, “Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid,” J. Phys. D: Appl. Phys., vol. 47, no. 47, p. 503, 2014, doi:10.1088/0022-3727/47/47/475203.

[25] K. Wende et al. “Identification of the biologically active liquid chemistry induced by a non-thermal atmospheric pressure plasma jet,” Biointerphases, vol. 10, no. 02, p. 9518, 2015, doi:10.1116/1.4919710.

[26] P.J. Bruggeman and C. Leys, “Non-thermal plasmas in and in contact with liquids,” J. Phys. D: Appl. Phys., vol. 42, no. 05, p. 3001, 2009, doi:10.1088/0022-3727/42/5/053001.

[27] Z. Machala, I. Jedlovsky and V. Martisovits, "DC Discharges in Atmospheric Air and Their Transitions," in IEEE Transactions on Plasma Science, vol. 36, no. 4, pp. 918-919, Aug. 2008, doi: 10.1109/TPS.2008.922488.

[28] P.J. Bruggeman, E. Ribezl, A. Maslani, J. Degroote, A. Malesevic, R. Rego, J. Vierendeels and C. Leys, “Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode,” Plasma Source Sci. Technol., vol. 17, no. 02, p. 5012, 2008, doi:10.1088/0963-0252/17/2/025012.

[29] V. Titov, V. Rybkin, S. Smirnov, A. Kulentsan and H. Choi, “Experimental and theoretical studies on the characteristics of atmospheric pressure glow discharge with liquid cathode,” Plasma Chem. Plasma Process., vol. 26, no. 6, pp. 543–55, 2006, doi:10.1007/s11090-006-9014-6.

[30] Q. Xiong, Z. Yang and P.J. Bruggeman, “Absolute OH density measurements in an atmospheric pressure DC glow discharge with water electrode by broadband UV absorption spectroscopy,” J. Phys. D: Appl. Phys., vol. 48, no. 42, p. 4008, 2015, doi:10.1088/0022-3727/48/42/424008.

[31] N. Shirai, S. Uchida and F. Tochikubo, “Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric dc glow discharge using a liquid electrode,” Plasma Source Sci. Technol., vol. 23, no. 05, p. 4010, 2014, doi:10.1088/0963-0252/23/5/054010.

[32] P.J. Bruggeman, J.J. Liu, J. Degroote, M.G. Kong, J. Vierendeels and C.Leys, “DC excited glow discharges in atmospheric pressure air in pin-to-water electrode systems,” J. Phys. D: Appl. Phys., vol. 41, no. 21, p. 5201, 2008, doi:10.1088/0022-3727/41/21/215201.

[33] H. Kawamoto and S. Umezu, “Electrohydrodynamic deformation of water surface in a metal pin to water plate corona discharge system,” J. Phys. D: Appl. Phys., vol. 38, pp. 887–94, 2005, doi:10.1088/0022- 3727/38/6/017.

[34] A. Rumeli and M. Hizal, "Calculation of Impulse Flashover Voltage of a Water Column," in IEEE Transactions on Electrical Insulation, vol. EI-21, no. 4, pp. 591-598, Aug. 1986, doi: 10.1109/TEI.1986.348964.

[35] H. Matsuo, T. Fujishima, T. Yamashita and O. Takenouchi, "Propagation velocity and photoemission intensity of a local discharge on an electrolytic surface," in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 3, no. 3, pp. 444-449, June 1996, doi: 10.1109/94.506219.

[36] P.J. Bruggeman, J. Degroote, J. Vierendeels and C. Leys, “DC-excited discharges in vapour bubbles in capillaries,” Plasma Source Sci. Technol., vol. 17, no. 02, p. 5008, 2008, doi:10.1088/0963- 0252/17/2/025008.

[37] K. Tachibana, Y. Takekata, Y. Mizumoto, H. Motomura and M. Jinno, “Analysis of a pulsed discharge within single bubbles in water under synchronized conditions,” Plasma Source Sci. Technol., vol. 20, no. 03, p. 4005, 2011, doi:10.1088/0963-0252/20/3/034005.

[38] M.P. Brenner, S. Hilgenfeldt and D. Lohse, “Single-bubble sonoluminescence,” Rev. Mod. Phys., vol. 47, no. 2, pp. 425–84, 2002, doi:10.1103/RevModPhys.74.425.

[39] A. De Giacomo, M. Dell’Aglio, O. De Pascale and M. Capitelli, “From single pulse to double pulse nslaser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta B., vol. 62, pp. 721–38, 2007, doi:10.1016/j.sab.2007.06.008.

[40] J.E. Foster, “Plasma-based water purification: Challenges and prospects for the future,” Physics of Plasmas, vol. 24, no. 5, p. 16, 2017, doi:10.1063/1.4977921.

[41] K.R. Siefermann, Y. Liu, E. Lugovoy, O. Link, M. Faubel, U. Buck, B. Winter, B. Abel, “Binding energies, lifetimes and implications of bulk and interface solvated electrons in water,” Nature chemistry, vol. 2, no. 4, p.274, 2010, doi.10.1038/nchem.580.

[42] P. Lukes, B.R. Locke, “Plasma chemical oxidation processes in a hybrid gas–liquid electrical discharge reactor,” Journal of Physics D: Applied Physics, vol. 38, no. 22, p. 4074, 2005, doi:10.1088/0022- 3727/38/22/010.

[43] R. Engeln, B. Klarenaar, O. Guaitella, “Foundations of Optical Diagnostics in Low Temperature Plasmas”, Plasma Sources Sc. Technol. Vol. 29, no. 06, p. 3001, 2020, doi:10.1088/1361-6595/ab6880.

[44] M. Laroussi, X. Lu, and M. Keidar, “Perspective: The Physics, Diagnostics, and Applications of Atmospheric Pressure Low Temperature Plasma Sources Used in Plasma Medicine”, J. Appl. Phys., vol. 122, no. 02, p. 0901, 2017, doi:10.1063/1.4993710.

[45] M. Laroussi, “Cold Gas Plasma Sources and the Science behind their Applications in Biology and Medicine,” physics.med-ph., 2021, doi:10.48550/arXiv.2106.01366.

[46] T. Verreycken, R.M. van der Horst, A.H.F.M. Baede, E.M. Van Veldhuizen, and P.J. Bruggeman, “Time and spatially resolved LIF of OH in a plasma filament in atmospheric pressure He–H2O”, J. Phys.D: Appl. Phys., vol. 45, no. 04, p. 5205, 2012, doi:10.1088/0022-3727/45/4/045205.

[47] P. Davidovits, C.E. Kolb, L.R. Williams, J.T. Jayne and D.R. Worsnop, “Mass accommodation and chemical reactions at gas–liquid interfaces,” Chem. Rev., vol. 106, no. 4, pp. 1323–54, 2006, doi:10.1021/cr040366k.

[48] D.J. Donaldson and V. Vaida, “The influence of organic films at the air-aqueous boundary on atmospheric processes,” Chem. Rev., vol. 106, no. 4, pp. 1445–61, 2006, doi:10.1021/cr040367c.

[49] K. Moore and L.J. Roberts, “Measurement of lipid peroxidation,” Free Radic. Res., vol. 28, pp. 659–71, 1998, doi:10.3109/10715769809065821.

[50] Kaneko, Toshiro et al., “Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization,” Journal of clinical biochemistry and nutrition, vol. 60, no. 1, pp. 3-11, 2017, doi:10.3164/jcbn.16-73

[51] M.J. Traylor, M.J. Pavlovich, S. Karim, et al., “Long-term antibacterial efficacy of air plasma-activated water,” J Phys D: Appl Phys., vol. 44, no. 47, p. 2001, 2011, doi:10.1088/0022-3727/44/47/472001.

[52] M.A.C. Hänsch, M. Mann, K-D. Weltmann, T. von Woedtke, “Analysis of antibacterial efficacy of plasma-treated sodium chloride solutions,” J Phys D: Appl Phys., vol. 48, no. 45, p. 4001, 2015, doi:10.1088/0022-3727/48/45/454001.

[53] S. Kanazawa, H. Kawano, S. Watanabe, et al., “Observation of OH radicals produced by pulsed discharges on the surface of a liquid,” Plasma Sources Sci Technol., vol. 20, no. 3, p. 4010, 2011, doi:10.1088/0963-0252/20/3/034010.

[54] T.J. Mason, J.P. Lorimer, D.M. Bates, Y. Zhao, “Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor,” Ultrason Sonochem., vol. 1, no. 2, pp: S91–S95, 1994, doi:10.1016/1350-4177(94)90004-3.

[55] M. Kamibayashi, S. Oowada, H. Kameda, et al., “Synthesis and characterization of a practically better DEPMPO-type spin trap, 5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO),” Free Radical Res., vol. 40, no. 11, pp: 1166–1172, 2006, doi:10.1080/10715760600883254.

[56] A. Tani, Y. Ono, S. Fukui, S. Ikawa, K. Kitano, “Free radicals induced in aqueous solution by noncontact atmospheric-pressure cold plasma,” Appl Phys Lett., vol. 25, no. 100, p. 4103, 2012, doi:10.1063/1.4729889.

[57] H. Tresp, M.U. Hammer, J. Winter, K.D. Weltmann, S. Reuter, “Quantitative detection of plasmagenerated radicals in liquids by electron paramagnetic resonance spectroscopy,” J Phys D: Appl Phys., vol. 46, no. 43, p. 5401, 2013, doi:10.1088/0022-3727/46/43/435401.

[58] T. Kawasaki et al., "Visualization of the Distribution of Oxidizing Substances in an Atmospheric Pressure Plasma Jet," in IEEE Transactions on Plasma Science, vol. 42, no. 10, pp. 2482-2483, Oct. 2014, doi:10.1109/TPS.2014.2325038.

[59] T. Kawasaki, A. Sato, S. Kusumegi, et al., “Two-dimensional concentration distribution of reactive oxygen species transported through a tissue phantom by atmospheric-pressure plasma-jet irradiation,” Appl Phys Exp., vol. 9, no. 7, p. 6202, 2016, doi:10.7567/APEX.9.076202.

[60] P. Attri, Y.H. Kim, D.H. Park, J.H. Park, Y.J. Hong, H.S. Uhm, K.N. Kim, A. Fridman, E.H. Choi, “Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis,” Scientific reports, vol. 5, p. 9332, 2015, doi:10.1038/srep09332.

[61] Y.C. Luo, A.M. Lietz, S. Yatom, M.J. Kushner, P.J. Bruggeman, “Plasma kinetics in a nanosecond pulsed filamentary discharge sustained in Ar-H2O and H2O,” Journal of Physics D: Applied Physics, vol. 52, no. 4, p. 17, 2019, doi:10.1088/1361-6463/aaeb14.

[62] Y. Gorbanev, D. O'Connell, V. Chechik, “Non‐Thermal Plasma in Contact with Water: The Origin of Species,” Chemistry–A European Journal, vol. 22, no. 10, p. 3496, 2016, doi:10.1002/chem.201503771.

[63] D.T. Elg, I.W. Yang, D.B. Graves, “Production of TEMPO by O atoms in atmospheric pressure nonthermal plasma–liquid interactions,” Journal of Physics D: Applied Physics, vol. 50, no. 47, p. 5201, 2017, doi:10.1088/1361-6463/aa8f8c.

[64] Z. Chen, D. Liu, C. Chen, D. Xu, Z. Liu, W. Xia, M. Rong, M.G. Kong, “Analysis of the production mechanism of H2O2 in water treated by helium DC plasma jets,” Journal of Physics D: Applied Physics, vol. 51, no. 32, p. 5201, 2018, doi:10.1088/1361-6463/AAD0EB.

[65] M.M. Hefny, C. Pattyn, P. Lukes, J. Benedikt, “Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions,” Journal of Physics D: Applied Physics, vol. 49, no. 40, p. 4002, 2016, doi:10.1088/0022-3727/49/40/404002.

[66] N. Takeuchi, N. Ishibashi, “Generation mechanism of hydrogen peroxide in dc plasma with a liquid electrode,” Plasma Sources Sci. Technol., vol. 27, no. 4, p. 5010, 2018, doi:10.1088/1361-6595/aabd17.

[67] X. He, J. Lin, B. He, L. Xu, J. Li, Q. Chen, G. Yue, Q. Xiong, Q.H. Liu, “The formation pathways of aqueous hydrogen peroxide in a plasma-liquid system with liquid as the cathode,” Plasma Sources Science and Technology, vol. 27, no. 8, p. 5010, 2018, doi:10.1088/1361-6595/aad66d.

[68] P. Albertos, M.C. Romero-Puertas, K. Tatematsu, I. Mateos, I. Sánchez-Vicente, E. Nambara, O. Lorenzo, “S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth,” Nature communications, vol. 6, no. 8669, 2015, doi:10.1038/ncomms9669.

[69] G. Uchida, A. Nakajima, T. Ito, K. Takenaka, T. Kawasaki, K. Koga, M. Shiratani, Y. Setsuhara, “Effects of nonthermal plasma jet irradiation on the selective production of H2O2 and NO2− in liquid water,” Journal of Applied Physics, vol. 120, no. 20, p. 3302, 2016, doi:10.1063/1.4968568.

[70] W. Tian, A.M. Lietz, M.J. Kushner, “The consequences of air flow on the distribution of aqueous species during dielectric barrier discharge treatment of thin water layers,” Plasma Sources Science and Technology, vol. 25, no. 5, p. 5020, 2016, doi:10.1088/0963-0252/25/5/055020.

[71] P. Bruggeman, C. Leys, “Non-thermal plasmas in and in contact with liquids,” Journal of Physics D: Applied Physics, vol. 42, no. 5, p. 3001, 2009, doi:10.1088/0022-3727/42/5/053001.

[72] H. Suzuki, S. Nakano, H. Itoh, M. Sekine, M Hori, and H. Toyoda, “New line plasma source excited by 2.45 GHz microwave at atmospheric pressure,” Appl. Phys. Express, vol. 8, no. 3, p. 6001, 2015, doi: 10.7567/APEX.8.036001.

[73] H. Suzuki, S. Nakano, H. Itoh, M. Sekine, M Hori, and H. Toyoda, “Characteristics of an atmosphericpressure line plasma excited by 2.45 GHz microwave travelling wave,” Jpn. J. Appl. Phys., vol. 55, no. 1S, p. 01AH09, 2016, doi: 10.7567/JJAP.55.01AH09.

[74] H. Suzuki, and H. Toyoda, “An approach to line-shaped nitrogen plasma production at atmospheric pressure by slot-excited microwave discharge,” Jpn. J. Appl. Phys., vol. 56, no. 11, p. 6001, 2017, doi: 10.7567/JJAP.56.116001.

[75] T. Sunagawa, G. Harvel, Y. Aoki, M. Umeda, J. Hayami, K. Sakakibara, H. Goto, T. Ebina, M. Taguchi, N. Nagasawa, S. Yoshihashi, M. Hatashita, K. Kume, and T. Sakura, “Development of the gel indicator using PVA and KI,” [in Japanese] Mem. Fukui Univ. Technol., vol. 47, pp. 105-110, 2017, doi: 10.7598/cst2012.253. [76] S.I. Hayashi, K. Ono, K. Fujino, S.Ikeda, and K.Tanaka, “Novel radiochromic gel dosimeter based on a polyvinyl alcohol – Iodide complex,” Radiat. Meas., vol. 131, p. 106226, Feb. 2020, doi: 10.1016/j.radmeas.2019.106226. [77] S.I. Hayashi, K. Ono, K. Fujino, and S. Fujimoto, “Influence of the components of a radiochromic PVA – Iodide gel dosimeter on the optical dose response,” J. Phys. Conf. Ser., vol. 1305, p. 012031, 2019, doi: 10.1088/1742-6596/1305/1/012031.

Chapter3

[1] J. Winter et al., “Atmospheric pressure plasma jets: an overview of devices and new directions,” Plasma Sources Sci. Technol., vol. 24, no. 06, p. 4001, 2015, doi: 10.1088/0963-0252/24/6/064001.

[2] K.H. Becker, U. Kogelschatz, K.H. Schoenbach, and R.J. Barker, “Non-Equilibrium Air Plasmas at Atmospheric Pressure,” London: IOP Publishing, ISBN: 9780429175084, 2005.

[3] U. Kogelschatz, “Dielectric-barrier discharges: their history, discharge physics, and industrial applications,” Plasma chemistry and plasma processing, vol. 23, no. 1, pp.1–46, 2003, doi: 10.1023/A:1022470901385.

[4] M. Laroussi, X. Lu, “Room temperature atmospheric pressure plasma plume for biomedical applications,” Appl. Phys. Lett., vol. 87, no. 11, p. 3902, 2005, doi:10.1063/1.2045549.

[5] A. Schutze, J. Y. Jeong, S. E. Babayan, Jaeyoung Park, G. S. Selwyn and R. F. Hicks, "The atmosphericpressure plasma jet: a review and comparison to other plasma sources," in IEEE Transactions on Plasma Science, vol. 26, no. 6, pp. 1685-1694, Dec. 1998, doi: 10.1109/27.747887.

[6] P. Fauchais and A. Vardelle, “Thermal plasmas,” IEEE Trans. Plasma Sci., vol. 25, pp. 1258–1280, Dec. 1997.

[7] R. W. Smith, D. Wei, and D. Apelian, “Thermal plasma materials processing—Applications and opportunities,” Plasma Chem. PlasmaProcess., vol. 9, no. 1, pp. 135S–165S, 1989.

[8] M. Goldman and R. S. Sigmond, “Corona and insulation,” IEEE Trans.Elect. Insulation, vol. EI-17, no. 2, pp. 90–105, 1982.

[9] B. Eliasson and U. Kogelschatz, “Nonequilibrium volume plasma chemical processing,” IEEE Trans. Plasma Sci., vol. 19, pp. 1063–1077, Dec.1991.

[10] O. Jun-Seok, L. W. James, and W. B. James, “Plasma bullet current measurements in a free-stream helium capillary jet,” Plasma Sources Sci. Technol., vol. 21, no. 3, pp. 034020, 2012.

[11] L. Liu, Y. Zhang, W. Tian, Y. Meng, and J. Ouyang, “Electrical characteristics and formation mechanism of atmospheric pressure plasma jet,” Appl. Phys. Lett., vol. 104, no. 24, pp. 244108, 2014.

[12] T. Iwai, A. Albert, K. Okumura, H. Miyahara, A. Okino and C. Engelhard, “Fundamental properties of a non-destructive atmospheric-pressure plasma jet in argon or helium and its first application as an ambient desorption/ionization source for high-resolution mass spectrometry,” J. Anal. Atom Spectrom., vol. 29, no. 3, pp. 464-470, 2014, doi: 10.1039/C3JA50321F.

[13] K. Gazeli, P. Svarnas, B. Held, L. Marlin and F. Clément, “Possibility of controlling the chemical pattern of He and Ar “guided streamers” by means of N2 or O2 additives,” J. Appl. Phys., vol. 117, no. 09, p. 3302, 2015, doi:10.1063/1.4914035.

[14] J. Jonkers, M. van de Sande, A. Sola, A. Gamero, and J. van der Mullen: “On the differences between ionizing helium and argon plasmas at atmospheric pressure,” Plasma Sources Sci. Technol., Vol.12, No.30, 2002, doi:10.1088/0963-0252/12/1/304.

[15] S.Y. Yoon et al.: “Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria,” J. Korean Phys. Soc., Vol.68, pp.1176-1191 2016, doi:10.3938/jkps.68.1176.

[16] H. Joh Min et al.: “Comparison of the characteristics of atmospheric pressure plasma jets using different working gases and applications to plasma-cancer cell interactions,” AIP Adv., Vol.3, 092128, 2013, doi: 10.1063/1.4823484.

[17] Shinji Yoshimura et al., “Controlling feeding gas temperature of plasma jet with Peltier device for experiments with fission yeast,” Jpn. J. Appl. Phys., vol. 58, no. SE, p. EG03, 2019, doi:10.7567/1347- 4065/ab1473.

[18] S., Yuma, T. Takamatsu, T. Aizawa, S. Moriya, Y. Matsumura, A. Iwasawa, and A. Okino, “Influence of Controlling Plasma Gas Species and Temperature on Reactive Species and Bactericidal Effect of the Plasma,” Applied Sciences, vol. 11, no. 24, p. 11674, 2021, doi:10.3390/app112411674.

[19] Nguyen D B, Trinh Q H, Hossain M, Lee W G, and Mok Y S: “Improvement of electrical measurement of a dielectric barrier discharge plasma jet,” in IEEE Transactions on Plasma Science, Vol.47, No.5, pp.2004- 2010, 2019.

[20] M. Teschke, J. Kadzienski, E.G. Finantu-Dinu, D. Korzec, and J. Engemann, “High-speed photographs of a dielectric barrier atmospheric pressure plasma jet,” IEEE Trans. Plasma Sci., Vol.33, No.2, pp.310-311, 2005, doi:10.1109/TPS.2005.845377.

[21] T.N. Tran, H. Matsuura, Y. Matsui, and Y. Takemura: “Effect of alcohol addition on properties of argon atmospheric nonthermal plasma jet,” PREX, Vol.1, No.1, pp.009-015, 2019, doi:10.1088/2516-1067/aaf958.

[22] T. Sunagawa et al.: “Development of the Gel Indicator using PVA and KI,” Memoirs of Fukui University of technology (in Japanese), Vol.47, No.6, pp.105-110, 2017.

[23] S. Hayashi et al.: “Influence of the components of a radiochromic PVA–Iodide gel dosimeter on the optical dose response,” J. Phys.: Conf. Ser., Vol.1305, No.1, pp.012-031, 2019, doi:10.1088/1742- 6596/1305/1/012031.

[24] N. Jiang, A. Ji, and Z. Cao, "Atmospheric pressure plasma jet, “Effect of electrode configuration, discharge behavior, and its formation mechanism,” Journal of Applied Physics, vol. 106, no. 01, p. 3308, 2009, doi:10.1063/1.3159884.

[25] T.M. Allam et al., “Electrical Parameters Investigation and Zero Flow Rate Effect of Nitrogen Atmospheric Nonthermal Plasma Jet,” Energy Power Eng., vol. 6, no. 12, p. 437, 2014, doi: 10.4236/epe.2014.612036.

[26] T. Ito: “Control of reactive oxygen and nitrogen species production in liquid by nonthermal plasma jet with controlled surrounding gas,” Jpn. J. Appl. Phys., Vol.56, No.1S, 01AC06, 2017, doi:10.7567/JJAP.56.01AC06.

[27] J.S. Oh et al., “In-situ UV Absorption Spectroscopy for Observing Dissolved Ozone in Water,” J. Photopolym. Sci. Technol., vol. 29, no. 3, p. 427, 2016, doi:10.2494/photopolymer.29.427.

[28] K. Ogawa et al., “Effects of sheath gas flow on He atmospheric pressure plasma jet,” Appl. Phys. Express, vol. 12, no. 03, p. 6001, 2019, doi:10.7567/1882-0786/aafde9.

[29] Giichiro Uchida et al.: “Selective production of reactive oxygen and nitrogen species in the plasmatreated water by using a nonthermal high-frequency plasma jet,” Jpn. J. Appl. Phys., Vol.57, No.1, 2017, doi: 10.7567/JJAP.57.0102B4.

[30] W. Tian and M.J. Kushner, “Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue,” J. Phys. D: Appl. Phys., vol. 47, no. 16, p. 5201, 2014, doi:10.1088/0022-3727/47/16/165201.

[31] Eisenberg, D. and Kauzmann, W: “The Structure and Properties of Water,” Oxford, Clarendon (1969).

Chapter4

[1] K. Fricke, S. Reuter, D. Schroder, V. Schulz-Von Der Gathen, K.D. Weltmann, T. Von Woedtke, “Investigation of Surface Etching of Poly (Ether Ether Ketone) by Atmospheric-Pressure Plasmas,” Ieee Trans. Plasma Sci., Vol. 40, No. 11, Pp. 2900-2911, Nov. 2012, Doi: 10.1109/Tps.2012.2212463.

[2] D. Shaw, A. West, J. Bredin, E. Wagenaars, “Mechanisms behind surface modification of polypropylene film using an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol., vol. 25, no. 06, p. 5018, Oct. 2016, doi.org/10.1088/0963-0252/25/6/065018.

[3] V. Prysiazhnyi, V.F.B. Saturnino, K.G. Kostov, “Transferred Plasma Jet as a Tool to Improve Wettability of Inner Surfaces of Polymer tubes,” Int. J. Polym. Anal. Charact., vol. 22, no. 3, pp. 215-221, Dec. 2017, doi.org/10.1080/1023666X.2016.1277053.

[4] A.E. Dubinov, E.R. Lazarenko and V.D. Selemir, “Effect of glow discharge air plasma on grain crops seed,” IEEE Trans. Plasma Sci., vol. 28, no. 1, pp. 180-183, Feb. 2000, doi: 10.1109/27.842898.

[5] J.C. Volin, F.S. Denes, R.A. Young, S.M.T. Park, “Modification of seed germination performance through cold plasma chemistry technology,” Crop Sci., vol. 40, no. 6, pp. 1706-1718, Nov. 2000, doi.org/10.2135/cropsci2000.4061706x.

[6] B. Sera, P. S̆patenka, M. S̆erý, N. Vrchotova and I. Hrus̆ková, “Influence of plasma treatment on wheat and oat germination and early growth,” IEEE Trans. Plasma Sci., vol. 38, no. 10, pp. 2963-2968, Oct. 2010, doi: 10.1109/TPS.2010.2060728.

[7] M. Laroussi and X. Lu, “Room-temperature atmospheric pressure plasma plume for biomedical applications,” Appl. Phys. Lett., vol. 87, no. 11, p. 3902, Sep. 2005, doi: 10.1063/1.2045549.

[8] N. Jha, J.J. Ryu, E.H. Choi, and N.K. Kaushik, “Generation and and role of reactive oxygen and nitrogen species induced by plasma, lasers, chemical agents, and other systems in dentistry,” Oxid. Med. Cell. Longev., 2017:7542540, Oct. 2017, doi: 10.1155/2017/7542540.

[9] E.J. Szili, J.S. Oh, H. Fukuhara, R. Bhatia, N. Gaur, C.K. Nguyen, S.H. Hong, S. Ito, K. Ogawa, C. Kawada, T. Shuin, M. Tsuda, M. Furihata, A. Kurabayashi, H. Furuta, M. Ito, K. Inoue, A. Hatta, R.D Short, “Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour,” Plasma Sources Sci. Technol., vol. 27, no. 1, p. 4001, Dec. 2017, doi: 10.1088/1361-6595/aa9b3b.

[10] S. Mitra, L.N. Nguyen, M. Akter, G. Park, E.H. Choi, N.K. Kaushik, “Impact of ROS generated by chemical, physical, and plasma techniques on cancer attenuation,” Cancers, vol. 11, no. 7, pp. 1030, Jul. 2019, doi: 10.3390/cancers11071030.

[11] O.V. Penkov, M. Khadem, W. Lim, D. Kim, “A review of recent applications of atmospheric pressure plasma jets for materials processing,” J Coat Technol Res., vol. 12, pp. 225-235, 2015, doi: 10.1007/s11998- 014-9638-z.

[12] D.B. Graves, “The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology,” J. Phys. D: Appl. Phys., vol. 45, no. 26, p. 3001, Jun. 2012, doi: 10.1088/0022-3727/45/26/263001.

[13] P.M. Girard, A. Arbabian, M. Fleury et al., “Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma,” Sci Rep., vol. 6, p. 29098, Jul. 2016, doi: 10.1038/srep29098.

[14] M. Dünnbier, A. Schmidt-Bleker, J. Winter, M. Wolfram, R. Hippler, K.D. Weltmann, S. Reuter, “Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry,” J. Phys. D: Appl. Phys., vol. 46, no. 43, p. 5203, Oct. 2013, doi: 10.1088/0022-3727/46/43/435203.

[15] S. Reuter, K. Niemi, V. Schulz-von der Gathen, and H.F. Dobele, “Generation of atomic oxygen in the effluent of an atmospheric pressure plasma jet,” Plasma Sources Sci. Technol., vol. 18, no. 1, p. 5006, Nov. 2008, doi: 10.1088/0963-0252/18/1/015006.

[16] S. Reuter, J. Winter, S. Iseni, S. Peters, A. Schmidt-Bleker, M. Dunnbier, J. Schafer, R. Foest, K.D. Weltmann, “Detection of ozone in a MHz argon plasma bullet jet,” Plasma Sources Sci. Technol., vol. 21, no. 3, p. 4015, May. 2012, doi: 10.1088/0963-0252/21/3/034015.

[17] X. Lu, M. Laroussi, V. Puech, “On atmospheric-pressure non-equilibrium plasma jets and plasma bullets,” Plasma Sources Sci. Technol., vol. 21, no. 3, p. 4005, Apr. 2012, doi: 10.1088/0963- 0252/21/3/034005.

[18] M. Nagatsu, M. Kinpara, T. Abuzairi, “Fluorescence Analysis of Micro-scale Surface Modification Using Ultrafine Capillary Atmospheric Pressure Plasma Jet for Biochip Fabrication,” in: Jabłoński R., Szewczyk R. (eds) Recent Global Research and Education: Technological Challenges. Advances in Intelligent Systems and Computing, Springer, Cham., vol. 519, pp. 247-254, 2017, doi: 10.1007/978-3-319- 46490-9_34.

[19] G. Uchida, K. Kawabata, T. Ito, K. Takenaka, Y. Setsuhara, “Development of a non-equilibrium 60 MHz plasma jet with a long discharge plume,” J. Appl. Phys., vol. 122, no. 03, p. 3301, Jul. 2017, doi: 10.1063/1.4993715.

[20] J. Chauvin, F. Judée, M. Yousfi et al., “Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet,” Sci Rep., vol. 7, p. 4562, Jul. 2017, doi: 10.1038/s41598-017-04650-4.

[21] R. Rutkowski, S.A. Pancewicz, K. Rutkowski, Rutkowska J. Pol Merkur Lekarski, “Znaczenie reaktywnych form tlenu i azotu w patomechanizmie procesu zapalnego [Reactive oxygen and nitrogen species in inflammatory process],” Pol Merkur Lekarski., 23(134):131-6 Aug. 2007, PMID: 18044345.

[22] S. Yonemori, Y. Nakagawa, R. Ono, and T. Oda, “Measurement of OH density and air–helium mixture ratio in an atmospheric-pressure helium plasma jet,” J. Phys. D: Appl. Phys., vol. 45, no. 22, p. 5202, 2012, doi: 10.1088/0022-3727/45/22/225202.

[23] S. Yonemori and R. Ono, “Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence,” J. Phys. D: Appl. Phys., vol. 47, no. 12, p. 5401, 2014, doi: 10.1088/0022-3727/47/12/125401.

[24] D. Dobrynin, A. Fridman and A.Y. Starikovskiy, “Reactive Oxygen and Nitrogen Species Production and Delivery into Liquid Media by Microsecond Thermal Spark-Discharge Plasma Jet,” IEEE Trans. Plasma Sci., vol. 40, no. 9, pp. 2163-2171, Sept. 2012, doi: 10.1109/TPS.2012.2204780.

[25] B.A. Cruden, M.V.V.S. Rao, S.P. Sharma, M. Meyyappan, “Fourier-transform infrared and optical emission spectroscopy of CF4/O2/Ar mixtures in an inductively coupled plasma,” J. Appl. Phys., vol. 93, p. 5053, Apr. 2003, doi: 10.1063/1.1563819.

[26] T. Kawasaki, F. Mitsugi, K. Koga, M. Shiratani, “Local supply of reactive oxygen species into a tissue model by atmospheric-pressure plasma-jet exposure,” J. Appl. Phys., vol. 125, p. 213303, Jun. 2019, doi: 10.1063/1.5091740.

[27] T. Kawasaki, S. Kusumegi, A. Kudo, T. Sakanoshita, T. Tsurumaru, A. Sato, G. Uchida, K. Koga, M. Shiratani, “Effects of irradiation distance on supply of reactive oxygen species to the bottom of a Petri dish filled with liquid by an atmospheric O2/He plasma jet,” J. Appl. Phys., vol. 119, p. 173301, May 2016, doi: 10.1063/1.4948430.

[28] F. Mitsugi, S. Kusumegi, T. Kawasaki, “Visualization of ROS Distribution Generated by Atmospheric Plasma Jet,” IEEE Trans. Plasma Sci., vol. 47, no. 2, pp. 1057-1062, Feb. 2019, doi: 10.1109/TPS.2018.2858807.

[29] S. Hayashi, C. Nakano, T. Motoyama, “The reaction of iodine with partially saponified polyvinyl acetate,” [in Japanese] Kobunshi Kagaku, vol. 20, pp. 303-311, 1963, doi: 10.1295/koron1944.20.303.

[30] S. Hayashi, I. Kaneko, N. Hojo, “Reaction of iodine into poly (vinyl acetate) Particles Suspended in Aqueous Solution in the Presence of potassium iodide,” Polym. J., vol. 6, pp. 33-38, 1974, doi: 10.1295/polymj.6.33.

[31] S.N. Bhad and V.S. Sangawar, “Synthesis and study of PVA based gel electrolyte,” Chem. Sci. Trans., vol. 1, no. 3, pp. 653-657, 2012, doi: 10.7598/cst2012.253.

[32] T. Sunagawa, G. Harvel, Y. Aoki, M. Umeda, J. Hayami, K. Sakakibara, H. Goto, T. Ebina, M. Taguchi, N. Nagasawa, S. Yoshihashi, M. Hatashita, K. Kume, and T. Sakura, “Development of the gel indicator using PVA and KI,” [in Japanese] Mem. Fukui Univ. Technol., vol. 47, pp. 105-110, 2017, doi: 10.7598/cst2012.253.

[33] S.I. Hayashi, K. Ono, K. Fujino, S.Ikeda, and K.Tanaka, “Novel radiochromic gel dosimeter based on a polyvinyl alcohol – Iodide complex,” Radiat. Meas., vol. 131, p. 106226, Feb. 2020, doi: 10.1016/j.radmeas.2019.106226.

[34] S.I. Hayashi, K. Ono, K. Fujino, and S. Fujimoto, “Influence of the components of a radiochromic PVA – Iodide gel dosimeter on the optical dose response,” J. Phys. Conf. Ser., vol. 1305, p. 012031, 2019, doi: 10.1088/1742-6596/1305/1/012031.

[35] H. Matsuura, B. Ouanthavinsak, N.T. Tran, M. Hu, J.J. Sakamoto Y. Takemura, R. Asada, M. Furuta, “Reactive radical study using the polyvinyl alcohol–potassium iodide solution as a new chemical probe,” Plasma Medicine, vol. 11(4), pp. 31-40, 2021, doi: 10.1615/PlasmaMed. 20201040820, 2021.12.

[36] H. Suzuki, S. Nakano, H. Itoh, M. Sekine, M Hori, and H. Toyoda, “New line plasma source excited by 2.45 GHz microwave at atmospheric pressure,” Appl. Phys. Express, vol. 8, no. 3, p. 6001, 2015, doi: 10.7567/APEX.8.036001.

[37] H. Suzuki, S. Nakano, H. Itoh, M. Sekine, M Hori, and H. Toyoda, “Characteristics of an atmosphericpressure line plasma excited by 2.45 GHz microwave travelling wave,” Jpn. J. Appl. Phys., vol. 55, no. 1S, p. 01AH09, 2016, doi: 10.7567/JJAP.55.01AH09.

[38] H. Suzuki, and H. Toyoda, “An approach to line-shaped nitrogen plasma production at atmospheric pressure by slot-excited microwave discharge,” Jpn. J. Appl. Phys., vol. 56, no. 11, p. 6001, 2017, doi: 10.7567/JJAP.56.116001.

Chapter5

[1] M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk and J.L. Zimmermann, “Plasma medicine: an introductory review,” New J. Phys., vol. 11, no. 11, p. 5012, 2009, doi:10.1088/1367- 2630/11/11/115012.

[2] T. Von Woedtke, S. Reuter, K. Masur and K.D. Weltmann, “Plasmas for medicine,” Phys. Rep., vol. 530, no. 04, pp. 291–320, 2013, doi:10.1016/j.physrep.2013.05.005.

[3] X. Lu, M. Laroussi and V. Puech, “On atmospheric-pressure non-equilibrium plasma jets and plasma bullets,” Plasma Sources Sci.Technol., vol. 21, no. 03, p. 4005, 2012, doi:10.1088/0963-0252/21/3/034005.

[4] G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets and A. Fridman, “Applied Plasma Medicine,” Plasma Process. Polym., vol. 5, no. 6, pp. 503–33, 2008, doi:10.1002/ppap.200700154.

[5] N. Jiang, L. Gao, A. Ji, and Z. Cao, “Helium corona-assisted air discharge,” Journal of Applied Physics, vol. 110, no. 08, p. 3301, 2011, doi:10.1063/1.3651600.

[6] J.L. Walsh and M.G. Kong, “Contrasting characteristics of linear-field and cross-field atmospheric plasma jets,” Appl. Phys. Lett., vol. 93, no. 11, p. 1501, 2008, doi:10.1063/1.2982497.

[7] Z. Fang, J. Lin, X. Xie, Y. Qiu and E. Kuffel, “Experimental study on the transition of the discharge modes in air dielectric barrier discharge,” J. Phys. D: Appl. Phys., vol. 42, no. 08, p. 5203, 2009, doi:10.1088/0022- 3727/42/8/085203.

[8] J. Xu, C. Zhang, T. Shao, Z. Fang and P. Yan, “Formation of hydrophobic coating on PMMA surface using unipolar nanosecond-pulse DBD in atmospheric air,” J. Electrost., vol. 71, no. 3, pp. 435–9, 2013, doi: 10.1016/j.elstat.2012.12.011.

[9] J. Schlegel, J. Köritzer and V. Boxhammer, “Plasma in cancer treatment,” Clin. Plasma Med., vol. 1, no. 2, pp. 2-7, 2013, doi:10.1016/j.cpme.2013.08.001.

[10] L. Gan, S. Zhang, D. Poorun, D. Liu, X. Lu, M. He, X. Duan and H. Chen, “Medical applications of nonthermal atmospheric pressure plasma in dermatology,” J. Dtsch. Dermatol. Ges., vol.16, pp. 7-13, 2018, doi:10.1111/ddg.13373.

[11] G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman and K. Harding, “Gas plasma: medical uses and developments in wound care,” Plasma Process. Polym., vol. 7, pp. 194-211, 2010, doi:10.1002/ppap.200900097.

[12] C. Hoffmann, C. Berganza, and J. Zhang, Med., “Cold Atmospheric Plasma: methods of production and application in dentistry and oncology,” Gas Res., vol. 3, no. 1, p. 21, 2013, doi:10.1186/2045-9912-3-21.

[13] D. Liu, B. Sun, F. Iza, D. Xu, X. Wang, M. Rong and M.G. Kong, “Main species and chemical pathways in cold atmospheric-pressure Ar+H2O plasmas,” Plasma Sources Sci. Technol., vol. 26, no. 04, p. 5009, 2017, doi:10.1088/1361-6595/aa5c22.

[14] K.D. Weltmann, R. Brandenburg, T. Von Woedtke, J. Ehlbeck, R. Foest, M. Stieber, E. Kindel, “Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs),” J. Phys. D: Appl. Phys., vol. 41, no. 19, p. 4008, 2008, doi:10.1088/0022-3727/41/19/194008.

[15] X.J. Shao, N. Jiang, G.J. Zhang and Z.X. Cao, “Comparative study on the atmospheric pressure plasma jets of helium and argon,” Appl. Phys. Lett., vol. 101, no. 25, p. 3509, 2012, doi:10.1063/1.4772639.

[16] T. Iwai, A. Albert, K. Okumura, H. Miyahara, A. Okino and C. Engelhard, “Fundamental properties of a non-destructive atmospheric-pressure plasma jet in argon or helium and its first application as an ambient desorption/ionization source for high-resolution mass spectrometry,” J. Anal. Atom Spectrom., vol. 29, pp. 464-470, 2014, doi:10.1039/C3JA50321F.

[17] N. Balcon, A. Aanesland and R. Boswell, “Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon,” Plasma Sources Sci. Technol., vol. 16, no. 2, p. 217, 2007, doi:10.1088/0963- 0252/16/2/002.

[18] J. Laimer and H. Störi, “Recent Advances in the Research on Non-Equilibrium Atmospheric Pressure Plasma Jets,” Plasma Process. Polym., vol. 4, pp. 266-274, 2007, doi:

[19] J. Glosík, J. Pavlík, M. Šícha and M. Tichý, “A contribution to the study of the influence of metastables in the flowing afterglow plasma, Czech. J. Phys., vol. 37, no. 188-193, 1987, doi:10.1007/BF01597666.

[20] W.T. Sun, G. Li, H.P. Li, C.Y. Bao, H.B. Wang, S. Zeng, X. Gao and H.Y. Luo, “Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol,” J. Appl. Phys., vol. 101, no. 12, p. 3302, 2007, doi:10.1063/1.2748430.

[21] Z. Chang, N. Jiang, G. Zhang and Z. Cao, “Influence of Penning effect on the plasma features in a nonequilibrium atmospheric pressure plasma jet,” J. Appl. Phys., vol. 115, no. 10, p. 3301, 2014, doi:10.1063/1.4868223.

[22] Wenjie Xia et al., “The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure,” Plasma Sources Sci. Technol., vol. 27, no. 05, p. 5001, 2018, doi:10.1088/1361-6595/aabdc1.

[23] J. Yu, W. Zhang, X. Wu, L. Wu, J. Tao, and K. Huang, “The influence of gas humidity on the discharge properties of a microwave atmospheric-pressure coaxial plasma jet,” AIP Advances, vol. 11, no. 02, p. 5131, 2021, doi:10.1063/5.0033059.

[24] T.N. Tran, H. Matsuura, Y. Matsui, and Y. Takemura: “Effect of alcohol addition on properties of argon atmospheric nonthermal plasma jet,” PREX, Vol.1, No.1, pp.009-015, 2019, doi:10.1088/2516-1067/aaf958.

[25] S. Hayashi, C. Nakano, T. Motoyama, “The reaction of iodine with partially saponified polyvinyl acetate,” [in Japanese] Kobunshi Kagaku, vol. 20, pp. 303-311, 1963, doi: 10.1295/koron1944.20.303.

[26] S. Hayashi, I. Kaneko, N. Hojo, “Reaction of iodine into poly (vinyl acetate) Particles Suspended in Aqueous Solution in the Presence of potassium iodide,” Polym. J., vol. 6, pp. 33-38, 1974, doi: 10.1295/polymj.6.33.

[27] S.N. Bhad and V.S. Sangawar, “Synthesis and study of PVA based gel electrolyte,” Chem. Sci. Trans., vol. 1, no. 3, pp. 653-657, 2012, doi: 10.7598/cst2012.253.

[28] T. Sunagawa, G. Harvel, Y. Aoki, M. Umeda, J. Hayami, K. Sakakibara, H. Goto, T. Ebina, M. Taguchi, N. Nagasawa, S. Yoshihashi, M. Hatashita, K. Kume, and T. Sakura, “Development of the gel indicator using PVA and KI,” [in Japanese] Mem. Fukui Univ. Technol., vol. 47, pp. 105-110, 2017, doi: 10.7598/cst2012.253.

[29] P. Bruggeman and Daan C Schram, “On OH production in water containing atmospheric pressure plasmas,” Plasma Sources Sci. Technol., vol. 19, no. 04, p. 5025, 2010, doi:10.1088/0963-0252/19/4/045025.

参考文献をもっと見る