リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on developmental roles of retinoic acid and its regulation in metamorphosing Japanese flounder larvae」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on developmental roles of retinoic acid and its regulation in metamorphosing Japanese flounder larvae

Chen Qiran 東北大学

2021.03.25

概要

Japanese flounder (Paralichthys olivaceus) is a ray-finned demersal fish belonging to the order Pleuronectiformes, which represents the most extreme asymmetric body plan among vertebrates. In wild-type adult flounder, both eyes reside on the left side of body (the ocular-side), with brownish skin color. During early larval stages, the flounder grows in bilateral symmetry as most other teleost fish. The asymmetry starts during the metamorphic stages. The mid-metamorphosing stage (G-stage) is the climax of metamorphosis, when the right eye starts to migrate to the left side along with the rotation of the tectum. Then the late metamorphosing stage (H-stage), the right eye migrates to the midline of the head, while the ocular-side starts to form pigmentation. Until the post-metamorphosing stage (I-stage), the eye finishes migration and the body forms an asymmetric pigment pattern, with adult-type melanophores and xanthophores existing on the ocular-side (Fig. 1.1) (Chen et al., 2020; Minami, 1982; Suzuki et al., 2009). Because of its peculiar morphology and the established culture system, the Japanese flounder gained a lot of attentions and became one of the wellstudied flatfish. A recent study, which used next-generation sequencing unveiled the genome sequence of the Japanese flounder, making it a model animal for the asymmetry studies (Shao et al., 2017).

The asymmetric pigmentation in flounder occurs during the metamorphosis when the body axis is transformed (from vertical to horizontal direction); while most animals in general have a dorso-ventral (DV) gradation of skin pigments, it is reasonable that the asymmetric pigmentation in flounder is associated with the body axis (left-right). But until now, the knowledge about the regulatory system of the flounder symmetric pigmentation is limited. In mammals, the pigment pattern is regulated by the spatial expression of Agoutisignaling protein (Asip) driving a switch between the yellow and black pigment in dorsal and ventral regions (Vrieling et al., 1994). In rat, the loss of T-box transcription factor 15 (Tbx15) affects the expression of the ventral-specific Agouti isoform, contributing to the change of DV patterning (Candille et al., 2004). In contrast, the skin pigment patterning in fish is regulated by a DV distribution of different types of chromatophores. Knockout of the asip1 caused the loss of DV patterning in zebrafish, suggesting the asip1 plays a key role in establishment of DV countershading (Cal et al., 2019). However, the mechanism of the generation of Asip1 gradient is still unknown.

参考文献

Ahn, D.G., Kourakis, M.J., Rohde, L.A., Silver, L.M., Ho, R.K., 2002. T-box gene tbx5 is essential for formation of the pectoral limb bud. Nature 417, 754-758.

Alonso, M.I., Martin, C., Carnicero, E., Bueno, D., Gato, A., 2011. Cerebrospinal fluid control of neurogenesis induced by retinoic acid during early brain development. Dev Dyn 240, 1650-1659.

Aparicio, S., Chapman, J., Stupka, E., Putnam, N., Chia, J.M., Dehal, P., Christoffels, A., Rash, S., Hoon, S., Smit, A., Gelpke, M.D., Roach, J., Oh, T., Ho, I.Y., Wong, M., Detter, C., Verhoef, F., Predki, P., Tay, A., Lucas, S., Richardson, P., Smith, S.F., Clark, M.S., Edwards, Y.J., Doggett, N., Zharkikh, A., Tavtigian, S.V., Pruss, D., Barnstead, M., Evans, C., Baden, H., Powell, J., Glusman, G., Rowen, L., Hood, L., Tan, Y.H., Elgar, G., Hawkins, T., Venkatesh, B., Rokhsar, D., Brenner, S., 2002. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301-1310.

Arnhold, T., Tzimas, G., Wittfoht, W., Plonait, S., Nau, H., 1996. Identification of 9-cis-retinoic acid, 9,13-di-cis-retinoic acid, and 14-hydroxy-4,14-retro-retinol in human plasma after liver consumption. Life Sci 59, 169-177.

Balmer, J.E., Blomhoff, R., 2002. Gene expression regulation by retinoic acid. J Lipid Res 43, 1773-1808.

Balmer, J.E., Blomhoff, R., 2005. A robust characterization of retinoic acid response elements based on a comparison of sites in three species. J Steroid Biochem Mol Biol 96, 347-354.

Bedo, G., Santisteban, P., Aranda, A., 1989. Retinoic acid regulates growth hormone gene expression. Nature 339, 231-234.

Bel-Vialar, S., Itasaki, N., Krumlauf, R., 2002. Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129, 5103-5115.

Bertenshaw, G.P., Turk, B.E., Hubbard, S.J., Matters, G.L., Bylander, J.E., Crisman, J.M., Cantley, L.C., Bond, J.S., 2001. Marked differences between metalloproteases meprin A and B in substrate and peptide bond specificity. J Biol Chem 276, 13248-13255.

Blomhoff, R., Green, M.H., Green, J.B., Berg, T., Norum, K.R., 1991. Vitamin A metabolism: new perspectives on absorption, transport, and storage. Physiol Rev 71, 951-990.

Bohnsack, B.L., Kasprick, D.S., Kish, P.E., Goldman, D., Kahana, A., 2012. A zebrafish model of axenfeld-rieger syndrome reveals that pitx2 regulation by retinoic acid is essential for ocular and craniofacial development. Invest Ophthalmol Vis Sci 53, 7-22.

Cal, L., Suarez-Bregua, P., Comesana, P., Owen, J., Braasch, I., Kelsh, R., Cerda-Reverter, J.M., Rotllant, J., 2019. Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation. Sci Rep 9, 3449.

Candille, S.I., Van Raamsdonk, C.D., Chen, C., Kuijper, S., Chen-Tsai, Y., Russ, A., Meijlink, F., Barsh, G.S., 2004. Dorsoventral patterning of the mouse coat by Tbx15. PLoS Biol 2, 30-42.

Cañestro, C., Catchen, J.M., Rodriguez-Mari, A., Yokoi, H., Postlethwait, J.H., 2009.

Consequences of lineage-specific gene loss on functional evolution of surviving paralogs: ALDH1A and retinoic acid signaling in vertebrate genomes. PLoS Genet 5,

e1000496.

Canete, A., Cano, E., Munoz-Chapuli, R., Carmona, R., 2017. Role of vitamin A/retinoic acid in regulation of embryonic and adult hematopoiesis. Nutrients 9, 159.

Chambon, P., 1996. A decade of molecular biology of retinoic acid receptors. FASEB J 10, 940-954.

Chang, J.T., Lehtinen, M.K., Sive, H., 2016. Zebrafish cerebrospinal fluid mediates cell survival through a retinoid signaling pathway. Dev Neurobiol 76, 75-92.

Chen, Q., Sato, K., Yokoi, H., Suzuki, T., 2020. Developmental regulatory system of ocularside-specific asymmetric pigmentation in flounder: Critical role of retinoic acid signaling. J Exp Zool B Mol Dev Evol 334, 156-167.

Chen, Q., Yokoi, H., Suzuki, T., 2018. Expression profiles of RA synthases and catabolic enzymes in newly hatched and metamorphosing larvae of Japanese flounder, Paralichthys olivaceus. Gen Comp Endocrinol 269, 60-67.

Cunningham, T.J., Duester, G., 2015. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 16, 110-123. de Jong, J.L., Davidson, A.J., Wang, Y., Palis, J., Opara, P., Pugach, E., Daley, G.Q., Zon, L.I., 2010. Interaction of retinoic acid and scl controls primitive blood development. Blood 116, 201-209.

Doetsch, F., Garcia-Verdugo, J.M., Alvarez-Buylla, A., 1997. Cellular composition and threedimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17, 5046-5061.

Duester, G., 2008. Retinoic acid synthesis and signaling during early organogenesis. Cell 134,921-931.

Essner, J.J., Amack, J.D., Nyholm, M.K., Harris, E.B., Yost, H.J., 2005. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132, 1247-1260.

Fujiwara, K., Kikuchi, M., Takigami, S., Kouki, T., Yashiro, T., 2007. Expression of retinaldehyde dehydrogenase 1 in the anterior pituitary glands of adult rats. Cell Tissue Res 329,321-327.

Gale, E., Zile, M., Maden, M., 1999. Hindbrain respecification in the retinoid-deficient quail. Mech Dev 89, 43-54.

Gao, Z.Y., Huo, L.J., Cui, D.M., Yang, X., Zeng, J.W., 2016. The expression of bone morphogenetic protein 2 and matrix metalloproteinase 2 through retinoic acid receptor beta induced by all-trans retinoic acid in cultured ARPE-19 cells. PLoS One 11, e0150831.

Garrity, D.M., Childs, S., Fishman, M.C., 2002. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development 129, 4635-4645.

Germain, P., Gaudon, C., Pogenberg, V., Sanglier, S., Van Dorsselaer, A., Royer, C.A., Lazar, M.A., Bourguet, W., Gronemeyer, H., 2009. Differential action on coregulator interaction defines inverse retinoid agonists and neutral antagonists. Chem Biol 16, 479-489.

Ghyselinck, N.B., Duester, G., 2019. Retinoic acid signaling pathways. Development 146, dev167502.

Gibert, Y., Gajewski, A., Meyer, A., Begemann, G., 2006. Induction and prepatterning of the zebrafish pectoral fin bud requires axial retinoic acid signaling. Development 133, 2649-2659.

Grimes, D.T., Boswell, C.W., Morante, N.F., Henkelman, R.M., Burdine, R.D., Ciruna, B., 2016. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 352, 1341-1344.

Haga, Y., Takeuchi, T., Seikai, T., 2002. Influence of all-trans retinoic acid on pigmentation and skeletal formation in larval Japanese flounder. Fish Sci 68, 560-570.

Hale, L.A., Tallafuss, A., Yan, Y.L., Dudley, L., Eisen, J.S., Postlethwait, J.H., 2006. Characterization of the retinoic acid receptor genes raraa, rarab and rarg during zebrafish development. Gene Expr Patterns 6, 546-555.

Hashimoto, H., Aritaki, M., Uozumi, K., Uji, S., Kurokawa, T., Suzuki, T., 2007. Embryogenesis and expression profiles of charon and nodal-pathway genes in sinistral (Paralichthys olivaceus) and dextral (Verasper variegatus) flounders. Zool Sci 24, 137-146.

Ijpenberg, A., Perez-Pomares, J.M., Guadix, J.A., Carmona, R., Portillo-Sanchez, V., Macias, D., Hohenstein, P., Miles, C.M., Hastie, N.D., Munoz-Chapuli, R., 2007. Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Dev Biol 312, 157-170.

Inoue, Y., Hasegawa, S., Yamada, T., Date, Y., Mizutani, H., Nakata, S., Matsunaga, K., Akamatsu, H., 2012. Bimodal effect of retinoic acid on melanocyte differentiation identified by time-dependent analysis. Pigment Cell Melanoma Res 25, 299-311.

Itoh, K., Watanabe, K., Wu, X., Suzuki, T., 2010. Three members of the iodothyronine deiodinase family, dio1, dio2 and dio3, are expressed in spatially and temporally specific patterns during metamorphosis of the flounder, Paralichthys olivaceus. Zoolog Sci 27, 574-580.

Kaneko, T., Freeha, K., Wu, X., Mogi, M., Uji, S., Yokoi, H., Suzuki, T., 2016. Role of notochord cells and sclerotome-derived cells in vertebral column development in fugu, Takifugu rubripes: histological and gene expression analyses. Cell Tissue Res 366, 37-49.

Kawaguchi, R., Yu, J., Honda, J., Hu, J., Whitelegge, J., Ping, P., Wiita, P., Bok, D., Sun, H., 2007. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315, 820-825.

Kelsh, R.N., Barsh, G.S., 2011. A nervous origin for fish stripes. PLoS Genet 7, e1002081.

Kikuchi, K., Takeda, S., 2001. Present status of research and production of Japanese flounder, Paralichthys olivaceus, in Japan. J Appl Aquaculture 11, 165-175.

Kumar, S., Duester, G., 2010. Retinoic acid signaling in perioptic mesenchyme represses Wnt signaling via induction of Pitx2 and Dkk2. Dev Biol 340, 67-74.

Kurlandsky, S.B., Gamble, M.V., Ramakrishnan, R., Blaner, W.S., 1995. Plasma delivery of retinoic acid to tissues in the rat. J Biol Chem 270, 17850-17857.

Kurokawa, T., Suzuki, T., 1996. Formation of the diffuse pancreas and the development of digestive enzyme synthesis in larvae of the Japanese flounder Paralichthys olivaceus. Aquaculture 141, 267-276.

Kurokawa, T., Suzuki, T., 2002. Development of neuropeptide Y-related peptides in the digestive organs during the larval stage of Japanese flounder, Paralichthys olivaceus.

Gen Comp Endocrinol 126, 30-38.

Lampert, J.M., Holzschuh, J., Hessel, S., Driever, W., Vogt, K., von Lintig, J., 2003. Provitamin A conversion to retinal via the beta,beta-carotene-15,15'-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis. Development 130, 2173-2186.

Le, H.G., Dowling, J.E., Cameron, D.J., 2012. Early retinoic acid deprivation in developing zebrafish results in microphthalmia. Vis Neurosci 29, 219-228.

Liang, D., Jia, W., Li, J., Li, K., Zhao, Q., 2012. Retinoic acid signaling plays a restrictive role in zebrafish primitive myelopoiesis. PLoS One 7, e30865.

Libien, J., Blaner, W.S., Piantedosi, R., 2007. Retinoid transport in Human CSF. J Neuropath Exp Neur 66, 448-448.

Loudig, O., Babichuk, C., White, J., Abu-Abed, S., Mueller, C., Petkovich, M., 2000. Cytochrome P450RAI(CYP26) promoter: a distinct composite retinoic acid response element underlies the complex regulation of retinoic acid metabolism. Mol Endocrinl 14, 1483-1497.

Maden, M., Blentic, A., Reijntjes, S., Seguin, S., Gale, E., Graham, A., 2007. Retinoic acid is required for specification of the ventral eye field and for Rathke's pouch in the avian embryo. Int J Dev Biol 51, 191-200.

Maden, M., Gale, E., Kostetskii, I., Zile, M., 1996. Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr Biol 6, 417-426.

Mahony, S., Mazzoni, E.O., McCuine, S., Young, R.A., Wichterle, H., Gifford, D.K., 2011. Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis. Genome Biol 12, 1-15.

Maliza, R., Fujiwara, K., Tsukada, T., Azuma, M., Kikuchi, M., Yashiro, T., 2016. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells. Endocr J 63, 555-561.

Marshall, H., Studer, M., Popperl, H., Aparicio, S., Kuroiwa, A., Brenner, S., Krumlauf, R., 1994. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370, 567-571.

Martin, C., Bueno, D., Alonso, M.I., Moro, J.A., Callejo, S., Parada, C., Martin, P., Carnicero, E., Gato, A., 2006. FGF2 plays a key role in embryonic cerebrospinal fluid trophic properties over chick embryo neuroepithelial stem cells. Dev Biol 297, 402-416.

McMenamin, S.K., Parichy, D.M., 2013. Metamorphosis in teleosts. Curr Top Dev Biol 103, 127-165.

Meyer, A., Van de Peer, Y., 2005. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27, 937-945.

Miki, N., Taniguchi, T., Hamakawa, H., Yamada, Y., Sakurai, N., 1990. Reduction of albinism in hatchery-reared flounder “hirame”, Paralichthys olivaceus by feeding on rotifer enriched with vitamin-A. Aquac Sci 38, 147-155.

Minami, T., 1982. The early life-history of a flounder Paralichthys olivaceus. Nippon Suisan Gakkai 48, 1581-1588.

Miwa, S., Yamano, K., 1999. Retinoic acid stimulates development of adult-type chromatophores in the flounder. J Exp Zool 284, 317-324.

Mogi, M., Uji, S., Yokoi, H., Suzuki, T., 2015. Early development of circadian rhythmicity in the suprachiamatic nuclei and pineal gland of teleost, flounder (Paralichthys olivaeus), embryos. Dev Growth Differ 57, 444-452.

Mort, R.L., Jackson, I.J., Patton, E.E., 2015. The melanocyte lineage in development and disease. Development 142, 620-632.

N'Soukpoe-Kossi, C.N., Sedaghat-Herati, R., Ragi, C., Hotchandani, S., Tajmir-Riahi, H.A., 2007. Retinol and retinoic acid bind human serum albumin: stability and structural features. Int J Biol Macromol 40, 484-490.

Nakamura, M., Seikai, T., Aritaki, M., Masuda, R., Tanaka, M., Tagawa, M., 2010. Dual appearance of xanthophores, and ontogenetic changes in other pigment cells during early development of Japanese flounder Paralichthys olivaceus. Fish Sci 76, 243-250.

Neumann, C.J., Grandel, H., Gaffield, W., Schulte-Merker, S., Nusslein-Volhard, C., 1999. Transient establishment of anteroposterior polarity in the zebrafish pectoral fin bud in the absence of sonic hedgehog activity. Development 126, 4817-4826.

Niederreither, K., Dolle, P., 2008. Retinoic acid in development: towards an integrated view.

Nat Rev Genet 9, 541-553.

Niederreither, K., Subbarayan, V., Dolle, P., Chambon, P., 1999. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21, 444-448.

Ogino, T., Sawada, M., Takase, H., Nakai, C., Herranz-Perez, V., Cebrian-Silla, A., Kaneko, N., Garcia-Verdugo, J.M., Sawamoto, K., 2016. Characterization of multiciliated ependymal cells that emerge in the neurogenic niche of the aged zebrafish brain. J Comp Neurol 524, 2982-2992.

Osmond, M.K., Butler, A.J., Voon, F.C., Bellairs, R., 1991. The effects of retinoic acid on heart formation in the early chick embryo. Development 113, 1405-1417.

Parada, C., Gato, A., Bueno, D., 2008. All-trans retinol and retinol-binding protein from embryonic cerebrospinal fluid exhibit dynamic behaviour during early central nervous system development. Neuroreport 19, 945-950.

Parichy, D.M., Elizondo, M.R., Mills, M.G., Gordon, T.N., Engeszer, R.E., 2009. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn 238, 2975-3015.

Parichy, D.M., Ransom, D.G., Paw, B., Zon, L.I., Johnson, S.L., 2000. An orthologue of the kitrelated gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development 127, 3031-3044.

Parichy, D.M., Spiewak, J.E., 2015. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution. Pigment Cell Melanoma Res 28, 31-50.

Pogoda, H.M., Riedl-Quinkertz, I., Lohr, H., Waxman, J.S., Dale, R.M., Topczewski, J., SchulteMerker, S., Hammerschmidt, M., 2018. Direct activation of chordoblasts by retinoic acid is required for segmented centra mineralization during zebrafish spine development. Development 145, dev159418.

Rhinn, M., Dolle, P., 2012. Retinoic acid signalling during development. Development 139, 843-858.

Ribes, V., Le Roux, I., Rhinn, M., Schuhbaur, B., Dolle, P., 2009. Early mouse caudal development relies on crosstalk between retinoic acid, Shh and Fgf signalling pathways. Development 136, 665-676.

Rowan, A.D., Litherland, G.J., Hui, W., Milner, J.M., 2008. Metalloproteases as potential therapeutic targets in arthritis treatment. Expert Opin Ther Targets 12, 1-18.

Salehi, Z., Mashayekhi, F., Naji, M., Pandamooz, S., 2009. Insulin-like growth factor-1 and insulin-like growth factor binding proteins in cerebrospinal fluid during the development of mouse embryos. J Clin Neurosci 16, 950-953.

Samarut, E., Fraher, D., Laudet, V., Gibert, Y., 2015. ZebRA: An overview of retinoic acid signaling during zebrafish development. Biochim Biophys Acta 1849, 73-83.

Schmitz, R.J., 1995. Ultrastructure and function of cellular components of the intercentral joint in the percoid vertebral column. J Morphol 226, 1-24.

Seikai, T., Matsumoto, J., Shimozaki, M., Oikawa, A., Akiyama, T., 1987a. An association of melanophores appearing at metamorphosis as vehicles of asymmetric skin color formation with pigment anomalies developed under hatchery conditions in the Japanese flounder, Paralichthys olivaceus. Pigment Cell Res 1, 143-151.

Seikai, T., Watanabe, T., Shimozaki, M., 1987b. Influence of three geographically different strains of Artemia nauplii on occurrence of albinism in hatchery-reared flounder Paralichthys olivaceus. Nippon Suisan Gakk 53, 195-200.

Shao, C., Bao, B., Xie, Z., Chen, X., Li, B., Jia, X., Yao, Q., Orti, G., Li, W., Li, X., Hamre, K., Xu, J., Wang, L., Chen, F., Tian, Y., Schreiber, A.M., Wang, N., Wei, F., Zhang, J., Dong, Z., Gao, L., Gai, J., Sakamoto, T., Mo, S., Chen, W., Shi, Q., Li, H., Xiu, Y., Li, Y., Xu, W., Shi, Z., Zhang, G., Power, D.M., Wang, Q., Schartl, M., Chen, S., 2017. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry. Nat Genet 49, 119-124.

Shimozono, S., Iimura, T., Kitaguchi, T., Higashijima, S., Miyawaki, A., 2013. Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496, 363-366.

Singh, A.P., Dinwiddie, A., Mahalwar, P., Schach, U., Linker, C., Irion, U., Nusslein-Volhard, C., 2016. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis. Dev Cell 38, 316-330.

Smith, S.M., Hayes, C.E., 1987. Contrasting impairments in IgM and IgG responses of vitamin A-deficient mice. Proc Natl Acad Sci U S A 84, 5878-5882.

Suzuki, T., Washio, Y., Aritaki, M., Fujinami, Y., Shimizu, D., Uji, S., Hashimoto, H., 2009. Metamorphic pitx2 expression in the left habenula correlated with lateralization of eye-sidedness in flounder. Dev Growth Differ 51, 797-808.

Takeuchi, T., 2001. A review of feed development for early life stages of marine finfish in Japan. Aquaculture 200, 203-222.

Takeuchi, T., Dedi, J., Ebisawa, C., Watanabe, T., Seikai, T., Hosoya, K., Nakazoe, J.-I., 1995.

The effect of β-carotene and vitamin A enriched Artemia nauplii on the malformation and color abnormality of larval Japanese flounder. Fish Sci 61, 141-148.

Takeuchi, T., Dedi, J., Haga, Y., Seikai, T., Watanabe, T., 1998. Effect of vitamin A compounds on bone deformity in larval Japanese flounder (Paralichthys olivaceus). Aquaculture 169, 155-165.

Tamura, K., Yonei-Tamura, S., Izpisua Belmonte, J.C., 1999. Differential expression of Tbx4 and Tbx5 in Zebrafish fin buds. Mech Dev 87, 181-184.

Tarui, F., Haga, Y., Ohta, K., Shima, Y., Takeuchi, T., 2006. Effect of Artemia nauplii enriched with vitamin A palmitate on hypermelanosis on the blind side in juvenile Japanese flounder Paralichthys olivaceus. Fish Sci 72, 256-262.

Togawa, M., Endo, Y., Suzuki, N., Yokoi, H., Suzuki, T., 2018. Identification of Sox10-positive cells at the dorsal fin base of juvenile flounder that are correlated with blind-side skin ectopic pigmentation. J Exp Zool B Mol Dev Evol 330, 427-437.

Tsukui, T., Capdevila, J., Tamura, K., Ruiz-Lozano, P., Rodriguez-Esteban, C., Yonei-Tamura, S., Magallon, J., Chandraratna, R.A.S., Chien, K., Blumberg, B., Evans, R.M., Belmonte, J.C.I., 1999. Multiple left-right asymmetry defects in Shh(-/-) mutant mice unveil a convergence of the Shh and retinoic acid pathways in the control of Lefty-1. P Natl Acad Sci USA 96, 11376-11381.

Vrieling, H., Duhl, D.M., Millar, S.E., Miller, K.A., Barsh, G.S., 1994. Differences in dorsal and ventral pigmentation result from regional expression of the mouse agouti gene. Proc Natl Acad Sci USA 91, 5667-5671.

Wagner, E., McCaffery, P., Drager, U.C., 2000. Retinoic acid in the formation of the dorsoventral retina and its central projections. Dev Biol 222, 460-470.

Wang, Z., Dolle, P., Cardoso, W.V., Niederreither, K., 2006. Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives. Dev Biol 297, 433- 445.

Washio, Y., Aritaki, M., Fujinami, Y., Shimizu, D., Yokoi, H., Suzuki, T., 2013. Ocular-side lateralization of adult-type chromatophore precursors: development of pigment asymmetry in metamorphosing flounder larvae. J Exp Zool B Mol Dev Evol 320, 151- 165.

Watanabe, K., Washio, Y., Fujinami, Y., Aritaki, M., Uji, S., Suzuki, T., 2008. Adult-type pigment cells, which color the ocular sides of flounders at metamorphosis, localize as precursor cells at the proximal parts of the dorsal and anal fins in early larvae. Dev Growth Differ 50, 731-741.

White, J.C., Highland, M., Kaiser, M., Clagett-Dame, M., 2000. Vitamin A deficiency results in the dose-dependent acquisition of anterior character and shortening of the caudal hindbrain of the rat embryo. Dev Biol 220, 263-284.

White, R.J., Schilling, T.F., 2008. How degrading: Cyp26s in hindbrain development. Dev Dyn 237, 2775-2790.

Wills, A.A., Holdway, J.E., Major, R.J., Poss, K.D., 2008. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 135, 183-192.

Wu, X., Chen, Q., Washio, Y., Yokoi, H., Suzuki, T., 2016. Excess retinoic acid induces fusion of centra by degenerating intervertebral ligament cells in Japanese flounder, Paralichthys olivaceus. J Exp Zool B Mol Dev Evol 326, 464-473.

Wu, X.M., Washio, Y., Aritaki, M., Fujinami, Y., Shimizu, D., Hashimoto, H., Iwasaki, T., Uji, S., Suzuki, T., 2011. Staging of initial pepsinogen and chitinase expression and complete gastric gland development within the larval stomach of Japanese flounder, spotted halibut, seven-band grouper and greater amberjack. Aquaculture 314, 165-172.

Yamada, T., Okauchi, M., Araki, K., 2010. Origin of adult-type pigment cells forming the asymmetric pigment pattern, in Japanese flounder (Paralichthys olivaceus). Dev Dyn 239, 3147-3162.

Yoong, S., O'Connell, B., Soanes, A., Crowhurst, M.O., Lieschke, G.J., Ward, A.C., 2007. Characterization of the zebrafish matrix metalloproteinase 9 gene and its developmental expression pattern. Gene Expr Patterns 7, 39-46.

Zappaterra, M.D., Lisgo, S.N., Lindsay, S., Gygi, S.P., Walsh, C.A., Ballif, B.A., 2007. A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res 6, 3537-3548.

Zheng, W., Chodobski, A., 2005. The blood-cerebrospinal fluid barrier. CRC Press.

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., Chanda, S.K., 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10, 1523.

参考文献をもっと見る