リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Role of ferritinophagy in cystine deprivation-induced cell death in glioblastoma cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Role of ferritinophagy in cystine deprivation-induced cell death in glioblastoma cells

Hayashima, Kazuki Kimura, Ikuo Katoh, Hironori 京都大学 DOI:10.1016/j.bbrc.2020.12.075

2021.02

概要

Ferroptosis is a form of cell death caused by iron-dependent lipid peroxidation. Cancer cells increase cystine uptake for the synthesis of glutathione (GSH), which is used by glutathione peroxidase 4 to reduce lipid peroxides. Here, we report that cystine deprivation in glioblastoma cells, but not inhibition of GSH synthesis by l-buthionine sulfoximine (BSO), induces ferroptosis. We found that cystine deprivation decreased the protein levels of ferritin heavy chain FTH1, whereas it was increased by BSO treatment. The lysosome inhibitor bafilomycin A1 or deletion of nuclear receptor coactivator 4 (NCOA4) inhibited cystine deprivation-induced decrease in FTH1 protein levels and cell death. In addition, cystine deprivation induced microtubule-associated protein light chain 3 (LC3)-II protein accumulation, suggesting that cystine deprivation induces ferritinophagy. BSO causes cell death when glioblastoma cells are treated with iron inducers, ferrous ammonium sulfate or hemin. On the other hand, cystine deprivation-induced degradation of FTH1 and cell death required glutamine. This study suggests that ferritinophagy, in addition to GSH depletion, plays an important role in cystine deprivation-induced ferroptosis in glioblastoma cells.

この論文で使われている画像

参考文献

1. T.A. Dolecek, J.M. Propp, N.E. Stroup, C. Kruchko, CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009, Neuro Oncol. 14 (2012) v1–49.

2. S.K. Tan, A. Jermakowicz, A.K. Mookhtiar, C.B. Nemeroff, S.C. Schürer, N.G. Ayad, Drug repositioning in glioblastoma: a pathway perspective, Front. Pharmacol.16 (2018) 218.

3. S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, R. Skouta, E.M. Zaitsev, C.E. Gleason, D.N. Patel, A.J. Bauer, A.M. Cantley, W.S. Yang, B. Morrison III, B.R. Stockwell, B.R. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072.

4. W.S. Yang, R. SriRamaratnam, M.E. Welsch, K. Shimada, R. Skouta, V.S. Viswanathan, J.H. Cheah, P.A. Clemons, A.F. Shamji, C.B. Clish, L.M. Brown, A.W. Girotti, V.W. Cornish, S.L. Schreiber, B.R. Stockwell, Regulation of ferroptotic cancer death by GPX4. Cell 156 (2014) 317-331.

5. J. Lewerenz, S.J. Hewett, Y. Huang, M. Lambros, P.W. Gout, P.W. Kalivas, A. Massie, I. Smolders, A. Methner, M. Pergande, S.B. Smith, V. Ganapathy, P. Maher, The cystine/glutamate antiporter system xc- in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal. 18 (2013) 522-555.

6. P. Koppula L. Zhuang B. Gan, Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy, Protein Cell (2020) doi.org/10.1007/s13238-020-00789-5.

7. S.J. Dixon, B.R. Stockwell, The hallmarks of ferroptosis, Annu. Rev. Cancer Biol. 3 (2019) 35-54.

8. C.S. Shin, P. Mishra, J.D. Watrous, V. Carelli, M. D’Aurelio, M. Jain, D.C. Chan, The glutamate/cystine xCT antiporter antagonaizes glutamine metabolism and reduces nutrient flexibility, Nat. Commun. 8 (2017) 15074.

9. P. Koppula, Y. Zhang, J. Shi, W. Li, B. Gan, The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate, J. Biol. Chem. 292 (2017) 14240-14249.

10. T. Goji, K. Takahara, M. Negishi, H. Katoh, Cystine uptake through the cystine/glutamine antiporter xCT triggers glioblastoma cell death under glucose deprivation, J. Biol. Chem. 292 (2017) 19721-19732.

11. B. Hassannia, P. Vandenabeele, T.V. Berghe , Targeting ferroptosis to iron out cancer, Cancer Cell 35 (2019) 830-849.

12. J. Liu, F. Kuang, G. Kroemer, D.J. Klionsky, D. Kang, D. Tang, Autophagy-dependent ferroptosis: machinery and regulation, Cell Chem. Biol. 27 (2020) 420-435.

13. W.S. Yang, B.R. Sockwell, Synthetic lethal screening identifies compounds activating iron-dependent nonapoptotic cell death in oncogenic Ras harboring cancer cells, Chem. Biol. 15 (2008) 234-245.

14. M. Gao, P. Monian, N. Quadri, R. Ramasamy, X. Jiang, Glutaminolysis and transferrin regulate ferroptosis, Mol. Cell 59 (2015) 298-308.

15. W. Hou, Y. Xie, X. Song, M.T. Lotze, H.J. Zeh III, R. Kang, D. Tang, Autophagy promotes ferroptosis by degradation of ferritin, Autophagy 12 (2016) 1425-1428.

16. M. Gao, P. Monian, Q. Pan, W. Zhang, J. Xiang, X. Jiang, Ferroptosis is an autophagic cell death process, Cell Res 26 (2016) 1021-1032.

17. J. Du, T. Wang, Y. Li, Y. Zhou, X. Wang, X. Yu, X. Ren, Y. An, Y. Wu, W. Sun, W. Fan, Q. Zhu , Y. Wang, X. Tong, DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin, Free Radic. Biol. Med. 131 (2019) 356-369.

18. E. Park, S.W. Chung, ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation, Cell Death Dis. 10 (2019) 822.

19. N. Geng, B.J. Shi, S.L. Li, Z.Y. Zhong, Y.C. Li, W.L. Xua, H. Zhou, J.H. Cai, Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells, Eur. Rev. Med. Pharmacol. Sci. 22 (2018) 3826- 3836.

20. C.W. Brown , J.J. Amante, P. Chhoy, A.L. Elaimy, H. Liu, L.J. Zhu, C.E. Baer, S.J. Dixon, AM. Mercurio, Prominin2 drives ferroptosis resistance by stimulating iron export, Dev. Cell 51 (2019) 575-586.

21. M.Y. Kwon, E. Park, S.J. Lee, S.W. Chung, Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death, Oncotarget 6 (2015) 24393-24403.

22. L.C. Chang, S.K. Chiang, S.E. Chen, Y.L. Yu, R.H. Chou, W.C. Chang, Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis, Cancer Lett. 416 (2018) 124-137.

23. Y. Katoh, S. Michisaka, S. Nozaki, T. Funabashi, T. Hirano, R. Takei, K. Nakayama, Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated homology-independent knock-in system, Mol. Biol. Cell 28 (2017) 898-906.

24. J.M. Goodwin, W.E. Dowdle , R. DeJesus, Z. Wang, P. Bergman, M. Kobylarz, A. Lindeman, R.J. Xavier, G. McAllister, B. Nyfeler, G. Hoffman, L.O. Murphy, Autophagy-independent lysosomal targeting regulated by ULK1/2-FIP200 and ATG9. Cell Rep 20 (2017) 2341-2356.

25. J.D. Mancias, X. Wang, S.P. Gygi, J.W. Harper, A.C. Kimmelman, Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509 (2014) 105-109.

26. N. Santana-Codina, J.D. Mancias, The role of NCOA4-mediated ferritinophagy in health and disease, Pharmaceuticals 11(2018) 114.

27. J. Liu, F. Kuang, G. Kroemer, D.J. Klionsky, R. Kang, D. Tang, Autophagy-dependent ferroptosis: machinery and regulation, Cell Chem. Biol. 27 (2020) 420-435.

28. Y. Kabeya, N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. Kominami, Y. Ohsumi, T. Yoshimori, LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, EMBO J 19 (2000) 5720-5728.

29. N. Mizushima, T. Yoshimori, How to interpret LC3 immunoblotting, Autophagy 3 (2007) 542-545.

30. T. Imai, S. Iwata, T. Hirayama, H. Nagasawa, S. Nakamura, M. Shimazawa, H. Hara, Intracellular Fe2+ accumulation in endothelial cells and pericytes induces blood-brain barrier dysfunction in secondary brain injury after brain hemorrhage, Sci. Rep. 9 (2019) 6228.

31. M. Gao, J. Yi, J. Zhu, A.M. Minikes, P. Monian, C.B. Thompson, X. Jiang, Role of mitochondria in ferroptosis, Mol. Cell 73 (2019) 354-363.

32. T.Z. Kidane, E. Sauble, M.C. Linder, Release of iron from ferritin requires lysosomal activity, Am. J. Physiol. Cell Physiol. 291 (2006) C445-C455.

33. Y. Zhang, M. Mikhael, D. Xu, Y. Li, S. Soe-Lin, B. Ning, W. Li, G. Nie, Y. Zhao, P. Ponka, Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit, Antioxid. Redox Signal. 13 (2010) 999-1009.

参考文献をもっと見る