リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transient Modulation of Working Memory Performance and Event-Related Potentials by Transcranial Static Magnetic Field Stimulation over the Dorsolateral Prefrontal Cortex」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transient Modulation of Working Memory Performance and Event-Related Potentials by Transcranial Static Magnetic Field Stimulation over the Dorsolateral Prefrontal Cortex

陳 瀟瀟 広島大学

2021.11.25

概要

近年,頭皮上にネオジム永久磁石を設置することにより,皮質の興奮性が抑制性に変化することが明らかとなり,経頭蓋静磁場刺激(Transcranial static magnetic field stimulation : tSMS)と呼ばれている.本研究は,左背外側前頭前野へのtSMSがワーキングメモリ(作業記憶)の成績と関連する事象関連電位に与える影響を明らかにすることを目的とした.

健常成人13名を対象に,左背外側前頭前野に対するtSMS,及び疑似刺激を26分間別日にランダムな順序で行った.被験者は,刺激前,刺激中(刺激開始20分後),刺激終了直後,ならびに刺激終了15分後にワーキングメモリ課題として2-back課題を行った.2-back課題では,PCモニター中央に1~9の数字を呈示し,被験者には,最後から2つ前に呈示された数字と同じ数字(ターゲット刺激)が呈示された場合に,右手に把持したスイッチのボタンを押すように指示した.2-back課題の成績は,正答時の反応時間とターゲット刺激と非ターゲット刺激の識別力を反映するd-primeを用いて評価した.また、2-back課題実施時に計測した脳波データを用いて事象関連電位のN2とP3成分の潜時と振幅を評価した.

結果,反応時間は,左背外側前頭前野へのtSMSによる影響を受けなかった.一方,d-primeは,tSMS終了直後に有意に低下した.N2成分の潜時は,tSMS終了直後に有意に遅延した.

本研究の結果より,左背外側前頭前野へのtSMSはワーキングメモリと関連する脳活動に影響を与えることが示唆された.今後,高次の脳機能や認知分野への応用が期待される.

参考文献

1. Lefaucheur, J.P.; Ayache, S.S.; Sorel, M.; Farhat, W.H.; Zouari, H.G.; Ciampi De Andrade, D.; Ahdab, R.; Ménard-Lefaucheur, I.; Brugières, P.; Goujon, C. Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: Influence of theta burst stimulation priming. Eur. J. Pain 2012, 16, 1403–1413. [CrossRef] [PubMed]

2. Liew, S.L.; Santarnecchi, E.; Buch, E.R.; Cohen, L.G. Non-invasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Front. Hum. Neurosci. 2014, 8, 1–15. [CrossRef] [PubMed]

3. Oliviero, A.; Mordillo-Mateos, L.; Arias, P.; Panyavin, I.; Foffani, G.; Aguilar, J. Transcranial static magnetic field stimulation of the human motor cortex. J. Physiol. 2011, 589, 4949–4958. [CrossRef] [PubMed]

4. Kufner, M.; Brückner, S.; Kammer, T. No modulatory effects by transcranial static magnetic field stimulation of human motor and somatosensory cortex. Brain Stimul. 2017, 10, 703–710. [CrossRef]

5. Lorenz, S.; Alex, B.; Kammer, T. Ten minutes of transcranial static magnetic field stimulation does not reliably modulate motor cortex excitability. PLoS ONE 2020, 15, e0233614. [CrossRef]

6. Watanabe, T.; Kubo, N.; Chen, X.; Yunoki, K.; Matsumoto, T.; Kuwabara, T.; Sunagawa, T.; Date, S.; Mima, T.; Kirimoto, H. Null Effect of Transcranial Static Magnetic Field Stimulation over the Dorsolateral Prefrontal Cortex on Behavioral Performance in a Go/NoGo Task. Brain Sci. 2021, 11, 483. [CrossRef]

7. Nojima, I.; Oliviero, A.; Mima, T. Transcranial static magnetic stimulation—From bench to bedside and beyond. Neurosci. Res. 2020, 156, 250–255. [CrossRef]

8. Dileone, M.; Mordillo-Mateos, L.; Oliviero, A.; Foffani, G. Long-lasting effects of transcranial static magnetic field stimulation on motor cortex excitability. Brain Stimul. 2018, 11, 676–688. [CrossRef]

9. Silbert, B.I.; Pevcic, D.D.; Patterson, H.I.; Windnagel, K.A.; Thickbroom, G.W. Inverse correlation between resting motor threshold and corticomotor excitability after static magnetic stimulation of human motor cortex. Brain Stimul. 2013, 6, 817–820. [CrossRef]

10. Nojima, I.; Koganemaru, S.; Fukuyama, H.; Mima, T. Static magnetic field can transiently alter the human intracortical inhibitory system. Clin. Neurophysiol. 2015, 126, 2314–2319. [CrossRef]

11. Nojima, I.; Koganemaru, S.; Mima, T.; Kida, T.; Brown, M.J.N.; Kirimoto, H. Combination of static magnetic fields and peripheral nerve stimulation can alter focal cortical excitability. Front. Hum. Neurosci. 2016, 10, 1–8. [CrossRef]

12. Kirimoto, H.; Asao, A.; Tamaki, H.; Onishi, H. Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices. Sci. Rep. 2016, 6, 4–11. [CrossRef]

13. Kirimoto, H.; Tamaki, H.; Otsuru, N.; Yamashiro, K.; Onishi, H.; Nojima, I.; Oliviero, A. Transcranial static magnetic field stimulation over the primary motor cortex induces plastic changes in cortical nociceptive processing. Front. Hum. Neurosci. 2018, 12, 1–10. [CrossRef]

14. Kirimoto, H.; Tamaki, H.; Matsumoto, T.; Sugawara, K.; Suzuki, M.; Oyama, M.; Onishi, H. Effect of transcranial static magnetic field stimulation over the sensorimotor cortex on somatosensory evoked potentials in humans. Brain Stimul. 2014, 7, 836–840. [CrossRef]

15. Gonzalez-Rosa, J.J.; Soto-Leon, V.; Real, P.; Carrasco-Lopez, C.; Foffani, G.; Strange, B.A.; Oliviero, A. Static magnetic field stimulation over the visual cortex increases alpha oscillations and slows visual search in humans. J. Neurosci. 2015, 35, 9182–9193. [CrossRef]

16. Carrasco-López, C.; Soto-León, V.; Céspedes, V.; Profice, P.; Strange, B.A.; Foffani, G.; Oliviero, A. Static magnetic field stimulation over parietal cortex enhances somatosensory detection in humans. J. Neurosci. 2017, 37, 3840–3847. [CrossRef]

17. Shibata, S.; Watanabe, T.; Yukawa, Y.; Minakuchi, M.; Shimomura, R.; Mima, T. Effect of transcranial static magnetic stimulation on intracortical excitability in the contralateral primary motor cortex. Neurosci. Lett. 2020, 723, 134871. [CrossRef]

18. Pineda-Pardo, J.A.; Obeso, I.; Guida, P.; Dileone, M.; Strange, B.A.; Obeso, J.A.; Oliviero, A.; Foffani, G. Static magnetic field stimulation of the supplementary motor area modulates resting-state activity and motor behavior. Commun. Biol. 2019, 2. [CrossRef]

19. Takamatsu, Y.; Koganemaru, S.; Watanabe, T.; Shibata, S.; Yukawa, Y.; Minakuchi, M.; Shimomura, R.; Mima, T. Transcranial static magnetic stimulation over the motor cortex can facilitate the contralateral cortical excitability in human. Sci. Rep. 2021, 11, 5370. [CrossRef]

20. Shibata, S.; Watanabe, T.; Yukawa, Y.; Minakuchi, M.; Shimomura, R.; Ichimura, S.; Kirimoto, H.; Mima, T. Effects of transcranial static magnetic stimulation over the primary motor cortex on local and network spontaneous electroencephalogram oscillations. Sci. Rep. 2021, 11, 8261. [CrossRef]

21. Nojima, I.; Watanabe, T.; Gyoda, T.; Sugata, H.; Ikeda, T.; Mima, T. Transcranial static magnetic stimulation over the primary motor cortex alters sequential implicit motor learning. Neurosci. Lett. 2019, 696, 33–37. [CrossRef]

22. Nakagawa, K.; Sasaki, A.; Nakazawa, K. Accuracy in Pinch Force Control Can Be Altered by Static Magnetic Field Stimulation Over the Primary Motor Cortex. Neuromodulation 2019, 22, 871–876. [CrossRef]

23. Kirimoto, H.; Watanabe, T.; Kubo, N.; Date, S.; Sunagawa, T.; Mima, T.; Ogata, K.; Nakazono, H.; Tobimatsu, S.; Oliviero, A. Influence of static magnetic field stimulation on the accuracy of tachystoscopically presented line bisection. Brain Sci. 2020, 10, 1006. [CrossRef]

24. Tsuru, D.; Watanabe, T.; Chen, X.; Kubo, N.; Sunagawa, T.; Mima, T.; Kirimoto, H. The effects of transcranial static magnetic fields stimulation over the supplementary motor area on anticipatory postural adjustments. Neurosci. Lett. 2020, 723, 134863. [CrossRef]

25. Rose, E.J.; Ebmeier, K.P. Pattern of impaired working memory during major depression. J. Affect. Disord. 2006, 90, 149–161. [CrossRef]

26. Santarnecchi, E.; Brem, A.K.; Levenbaum, E.; Thompson, T.; Kadosh, R.C.; Pascual-Leone, A. Enhancing cognition using transcranial electrical stimulation. Curr. Opin. Behav. Sci. 2015, 4, 171–178. [CrossRef]

27. Curtis, C.E.; D’Esposito, M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 2003, 7, 415–423. [CrossRef]

28. Smith, E.E.; Jonides, J. Storage and Executive Processes in the Frontal Lobes. Science 1999, 283, 1657. [CrossRef]

29. Tsuchida, A.; Fellows, L.K. Lesion evidence that two distinct regions within prefrontal cortex are critical for n-back performance in humans. J. Cogn. Neurosci. 2009, 21, 2263–2275. [CrossRef]

30. Mull, B.R.; Seyal, M. Transcranial magnetic stimulation of left prefrontal cortex impairs working memory. Clin. Neurophysiol. 2001, 112, 1672–1675. [CrossRef]

31. Osaka, N.; Otsuka, Y.; Hirose, N.; Ikeda, T. Transcranial magnetic stimulation (TMS) applied to left dorsolateral prefrontal cortex disrupts verbal working memory performance in humans. Neurosci. Lett. 2007, 418, 232–235. [CrossRef]

32. Hill, A.T.; Fitzgerald, P.B.; Hoy, K.E. Effects of Anodal Transcranial Direct Current Stimulation on Working Memory: A Systematic Review and Meta-Analysis of Findings from Healthy and Neuropsychiatric Populations. Brain Stimul. 2016, 9, 197–208. [CrossRef] [PubMed]

33. Brunoni, A.R.; Vanderhasselt, M.A. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain Cogn. 2014, 86, 1–9. [CrossRef] [PubMed]

34. Dedoncker, J.; Brunoni, A.; Stimulation, C.B.-B. A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: Influence of stimulation parameters. Brain Stimul. 2016, 9, 501–517. [CrossRef] [PubMed]

35. Mancuso, L.E.; Ilieva, I.P.; Hamilton, R.H.; Farah, M.J. Does transcranial direct current stimulation improve healthy working memory?: A meta-analytic review. J. Cogn. Neurosci. 2016, 28, 1063–1089. [CrossRef] [PubMed]

36. Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J.; Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 2010, 18, 394–412. [CrossRef] [PubMed]

37. Folstein, J.R.; Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology 2008, 45, 152–170. [CrossRef]

38. Daffner, K.R.; Chong, H.; Sun, X.; Tarbi, E.C.; Riis, J.L.; McGinnis, S.M.; Holcomb, P.J. Mechanisms underlying age-and performance-related differences in working memory. J. Cogn. Neurosci. 2011, 23, 1298–1314. [CrossRef]

39. Donchin, E.; Ritter, W.; Mccallum, W.C. Cognitive Psychophysiology: The Endogenous Components of the ERP. Event Relat. Brain Potentials Man 1978, 349, 411.

40. Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [CrossRef]

41. Gajewski, P.D.; Falkenstein, M. Neurocognition of aging in working environments. Z. Arb. 2011, 44, 307–320. [CrossRef]

42. Wiedemann, G.; Pauli, P.; Dengler, W.; Lutzenberger, W.; Birbaumer, N.; Buchkremer, G. Frontal brain asymmetry as a biological substrate of emotions in patients with panic disorders. Arch. Gen. Psychiatry 1999, 56, 78–84. [CrossRef]

43. Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [CrossRef]

44. Watanabe, T.; Tsutou, K.; Saito, K.; Ishida, K.; Tanabe, S.; Nojima, I. Performance monitoring and response conflict resolution associated with choice stepping reaction tasks. Exp. Brain Res. 2016, 234, 3355–3365. [CrossRef]

45. Haatveit, B.C.; Sundet, K.; Hugdahl, K.; Ueland, T.; Melle, I.; Andreassen, O.A. The validity of d prime as a working memory index: Results from the Bergen n-back task. J. Clin. Exp. Neuropsychol. 2010, 32, 871–880. [CrossRef]

46. Macmillan, N.A.; Creelman, C.D. Detection Theory: A User’s Guide; Cambridge University Press: New York, NY, USA, 1991; ISBN 0-521-36359-4.

47. Muller, A.; Sirianni, L.A.; Addante, R.J. Neural correlates of the Dunning–Kruger effect. Eur. J. Neurosci. 2021, 53, 460–484. [CrossRef]

48. Addante, R.J.; Ranganath, C.; Yonelinas, A.P. Examining ERP correlates of recognition memory: Evidence of accurate source recognition without recollection. Neuroimage 2012, 62, 439–450. [CrossRef]

49. Friedman, D.; Cycowicz, Y.M.; Gaeta, H. The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci. Biobehav. Rev. 2001, 25, 355–373. [CrossRef]

50. Dubreuil-Vall, L.; Chau, P.; Ruffini, G.; Widge, A.S.; Camprodon, J.A. tDCS to the left DLPFC modulates cognitive and physiological correlates of executive function in a state-dependent manner. Brain Stimul. 2019, 12, 1456–1463. [CrossRef] [PubMed]

51. Albuquerque, W.W.C.; Costa, R.M.P.B.; de Salazar e Fernandes, T.; Porto, A.L.F. Evidences of the static magnetic field influence on cellular systems. Prog. Biophys. Mol. Biol. 2016, 121, 16–28. [CrossRef]

52. Rosen, A.D. Membrane response to static magnetic fields: Effect of exposure duration. BBA Biomembr. 1993, 1148, 317–320. [CrossRef]

53. Dobson, J.; Stewart, Z.; Martinac, B. Preliminary evidence for weak magnetic field effects on mechanosensitive ion channel subconducting states in Escherichia coli. Electromagn. Biol. Med. 2002, 21, 89–95. [CrossRef]

54. Fregni, F.; Boggio, P.S.; Nitsche, M.; Bermpohl, F.; Antal, A.; Feredoes, E.; Marcolin, M.A.; Rigonatti, S.P.; Silva, M.T.A.; Paulus, W.; et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 2005, 166, 23–30. [CrossRef] [PubMed]

55. Brzezicka, A.; Kami ´nski, J.; Reed, C.M.; Chung, J.M.; Mamelak, A.N.; Rutishauser, U. Working memory load related theta power decreases in dorsolateral prefrontal cortex predict individual differences in performance. J. Cogn. Neurosci. 2019, 31, 1290–1307. [CrossRef] [PubMed]

56. Osaka, M.; Osaka, N.; Kondo, H.; Morishita, M.; Fukuyama, H.; Aso, T.; Shibasaki, H. The neural basis of individual differences in working memory capacity: An fMRI study. Neuroimage 2003, 18, 789–797. [CrossRef]

57. Watanabe, T.; Mima, T.; Shibata, S.; Kirimoto, H. Midfrontal theta as moderator between beta oscillations and precision control. Neuroimage 2021, 235, 118022. [CrossRef]

58. Rodriguez Merzagora, A.C.; Izzetoglu, M.; Onaral, B.; Schultheis, M.T. Verbal working memory impairments following traumatic brain injury: An fNIRS investigation. Brain Imaging Behav. 2014, 8, 446–459. [CrossRef]

59. Gajewski, P.D.; Falkenstein, M. Age-Related Effects on ERP and Oscillatory EEG-Dynamics in a 2-Back Task. J. Psychophysiol. 2014, 28, 162–177. [CrossRef]

60. Polich, J. Meta-analysis of P300 normative aging studies. Psychophysiology 1996, 33, 334–353. [CrossRef]

61. Zaehle, T.; Sandmann, P.; Thorne, J.D.; Jäncke, L.; Herrmann, C.S. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: Combined behavioural and electrophysiological evidence. BMC Neurosci. 2011, 12, 9–14. [CrossRef]

62. Kupfer, D.J.; Frank, E.; Phillips, M.L. Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet 2012, 379, 1045–1055. [CrossRef]

63. Mann, J.J. The Medical Management of Depression. N. Engl. J. Med. 2005, 353, 1819–1834. [CrossRef]

64. Papakostas, G.I.; Fava, M. Pharmacotherapy for Depression and Treatment-Resistant Depression; World Scientific: Singapore, 2010; ISBN 981428758X.

65. Knott, V.; Mahoney, C.; Kennedy, S.; Evans, K. EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. Neuroimaging 2001, 106, 123–140. [CrossRef]

66. Diego, M.A.; Field, T.; Hernandez-Reif, M. CES-D depression scores are correlated with frontal EEG alpha asymmetry. Depress. Anxiety 2001, 13, 32–37. [CrossRef]

67. Bench, C.J.; Frackowiak, R.S.; Dolan, R.J. Changes in regional cerebral blood flow on recovery from depression. Psychol. Med. 1995, 25, 247–261. [CrossRef]

68. Berlim, M.T.; Van Den Eynde, F.; Tovar-Perdomo, S.; Daskalakis, Z.J. Response, remission and drop-out rates following highfrequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: A systematic review and metaanalysis of randomized, double-blind and sham-controlled trials. Psychol. Med. 2014, 44, 225–239. [CrossRef]

69. Berlim, M.T.; Van Den Eynde, F.; Daskalakis, Z.J. Clinically meaningful efficacy and acceptability of low-frequency repetitive transcranial magnetic stimulation (rTMS) for treating primary major depression: A meta-analysis of randomized, double-blind and sham-controlled trials. Neuropsychopharmacology 2013, 38, 543–551. [CrossRef]

参考文献をもっと見る