リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「PHYTOCHEMICAL INVESTIGATION OF INDONESIAN PLANT, CURCUMA HEYNEANA AND ITS CHEMICAL CONVERSION STUDY」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

PHYTOCHEMICAL INVESTIGATION OF INDONESIAN PLANT, CURCUMA HEYNEANA AND ITS CHEMICAL CONVERSION STUDY

Melanny Ika Sulistyowaty 広島大学

2020.02.27

概要

Indonesia, one of Southeast Asia country, has an abundant amount of medicinal plant resources. Most are used as folk medicine, which is passed from generation to generation. Curcuma heyneana, locally known as Temugiring, is Indonesian native plant. It is traditionally used as skin scrub to treat skin disease and also as anthelmintic. Leishmaniasis is one of neglected-tropical diseases (NTD) categorized by WHO. It is estimated up to one million new cases and 65,000 mortality cases arise per year. Recently, a concern about the difficulty of discovery of novel bioactive compounds is increasing. In the last decade, it has been introduced an approach to produce bioactive compounds via chemical modification of crude natural extracts. In this study, we conducted phytochemical analysis of raw and chemically converted extracts of Alpinia galanga and Curcuma heyneana as a promising method to obtain novel bioactive “unnatural” natural products with anti-Leishmania activity.

Curcuma heyneana rhizomes were collected from a cultivated area in Java, Indonesia. The powder of dried rhizomes was extracted with ethanol, and then partitioned with ethyl acetate and 1-butanol, successively. By using bioassay-guided isolation procedure (Fig.2), ethyl acetate extract of Curcuma heyneana was subjected to investigation. Then the extract was separated on several chromatographic techniques, including silica gel and octadecylsilane column chromatography. The chemical structures of the isolated compounds were investigated by spectroscopic data analyses; consist of 1D and 2D NMR, FT-IR, UV and HR-ESI-MS measurements. The inhibitory activity of these compounds against Leishmania major parasites was examined by the colorimetric method, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT) assay. In this study, the cytotoxicity evaluation against A549 human lung cancer cell was also carried out.

On our phytochemical investigation of ethyl acetate fraction of C.heyneana rhizomes, we have isolated 15 known compounds. The investigation revealed the presence of seven guaiane-type sesquiterpenes (procurcumenol, aerugidiol, zedoarondiol, isozadoarondiol, curcumenol, 4-epicurcumenol and curcuzedoalide), two curcuminoids (curcumin and gingerol), three labdane-type diterpene, two known fatty acids (eicosadienoic acid and octadecatrienoic acid) and also adenosine.

The isolated compounds from C. heyneana were evaluated their inhibitory activity against L. major parasites and human lung cancercell, A549. Eicosadienoic acid (7), octadecatrienoic acid (8), curcumin (9), gingerol (10) and zeramin A (12) showed high inhibition against L. major (100 µg/ml). Meanwhile the compounds 7, 8, 9, 10 and curcuzedoalide (11) were found to be toxic to A549 cell (100 µg/ml). These activities of the extract and the isolated compounds were confirmed for the first time in this study.

As preliminary study, we’ve conducted chemical conversion of the extract of Alpinia galanga, zingiberaceae family plant, by the treatment with Oxone® (potassium peroxymonosulfate). In this study, the significant increase of inhibitory activity was observed on the chemically converted extract (CCE) of Alpinia galanga, in contrast to the original extract (ethyl acetate extract) that didn’t show any activity against L.major. The bioactivity-guided fractionation and purification resulted in thesuccessful isolation of six new compounds (14-19) along with four known compounds, including hydroquinone (20), 4-hydroxy-(4-hydroxyphenyl)- methoxy)benzaldehyde (21), Isocoumarin cis 4-hydroxymelein (22) and humulene triepoxide (23) (Fig. 4).From these compounds, hydroquinone (20) showed the highest inhibitory activity against L. major parasites with IC50 0.37 ± 1.37µg/ml, higher than the positive control, miltefosine (IC50 7.47 ± 0.30µg/ml).

The 1-BuOH extract of Curcuma heyneana had no activity against L. major. Therefore, we tried to increase the activity of 1-BuOH extract of C. heyneana by chemical conversion process to generate “unnatural” natural products from the extract of C.heyneana. In this case, the extract was simply heated (160 ̊C) in DMSO for 8 hr. The result showed that the CCE of C.heyneana had higher activity against L.major parasites than intact 1-BuOH extract. This finding indicated that the usefulness of heat treatment to modify the activity of crude extract, and the chemical conversion can be potential and powerful method on the discovery of new drug candidates, such as Leishmaniasis.

この論文で使われている画像

参考文献

1. Recueil des Travaux Botaniques Néerlandais 14: 132. 1917. (Recueil Trav. Bot. Néerl.)

2. Sastrapradja, Setijati; Soetjipto, Niniek Woelijarni; Danimihardja, Sarkat; Soejono, Rukmini, Proyek Penelitian Potensi Sumber Daya Ekonomi: Ubi-Ubian., Jakarta:LBN - LIPI -Balai Pustaka, 1980, 7. p.77.

3. Hasnah M. Sirat & Lee Lay Meng, Chemical Components of the Rhizome Oil of Curcuma Heyneana Val., Malaysian Journal of Science, 2009, 28 (3): 323 - 328.

4. Firman, K., Kinoshita, T., Itai A, and Sankawa, U., Terpenoids from Curcuma Heyneana, Phytochemistry, 1988, 27(12), pp. 3887-3891.

5. Azis Saifudin, Ken Tanaka, Shigetoshi Kadota, and Yasuhiro Tezuka, Sesquiterpenes from the Rhizomes of Curcuma heyneana, J. Nat. Prod. 2013, 76, 223-229.

6. Leishmaniasis. Available online: http://www.who.int/gho/negleted_disease/leishmaniasis/ (accessed on 11 July 2017).

7. Sakib, B.; Simon, L.C.; Marleen, B. Leishmaniasis. Lancet 2018, 392, 951-70.

8. Ohshiro, M., Kuroyanagi, M., and Ueno, A., Structures of Sesquiterpenes from Curcuma Longa, Phytochemistry, 1990, 29 (7), pp. 2201-2205.

9. Hikino, H., Sakurai, Y., Takemoto, T., Structure of Procurcumenol, Chem. Pharm. Bull. 1968, 16 (8): 1605-1607.

10. Masuda, T., Jitoe, A., Nakatani, N., Structure of Aerugidiol: a New Bridge-head Oxygenated Guaiane Sesquiterpene, Chemistry Letters, 1991, 1625-1628.

11. Kuroyanagi, M., Ueno, A., Ujiie, K., Sato, S. Structures of Sesquiterpenes from Curcuma aromatic SALISB. Chem. Pharm. Bull. 1987, 35 (1) 53-59.

12. Hikino, H., Sakurai, Y., Numabe, S., Takemoto, T., Structure of Curcumenol, Chem. Pharm. Bull. 1968, 16 (1): 39-42.

13. Matsuda, H., Morikawa, T., Toguchida, I., Ninomiya, K., and Yoshikawa, M., Medicinal Foodstuffs. XXVIII.1) Inhibitors of Nitric Oxide Production and New Sesquiterpenes, Zedoarofuran, 4-Epicurcumenol, Neocurcumenol, Gajutsulactones A and B, and Zedoarolides A and B, from Zedoariae Rhizoma, Chem. Pharm. Bull. 2001, 49(12) 1558-1566.

14. Tsuboi, S., Wu, X.H., Maeda, S., Ono, S, Kuroda, A., Kawazu, K., Takeda, A. Stereoselective Synthesis of Octadecapolyenoic Ester as an Insecticide. Chem. Pharm. Bull. 1987, 60 (1) 1103-1107.

15. Crombie, L., Jacklin, A.G., 311. Lipids. Part VI. Total synthesis of a- and B-elzostearic and punicic (trichosanic) acid. J. Chem. Soc., 1957, 1632-1646

16. Tallent, W.H., Harris, J., Wolff, I.A., (R)-13-hydroxy-cis-9, trans-11-octadecadienoic acid, The Principal Fatty Acid from Coriaria nepalensis Wall. Seed Oil, Tetrahedron Letters. 1966, 7 (36), 4329-4334

17. Syu, W.J., Shen, C.C., Don, M.J., Ou, J.C., Lee, G.H., Sun, C.M., Cytotoxicity of Curcuminoids and Some Novel Compounds from Curcuma zedoria, J.Nat.Prod., 1998, 61, 1531-1534.

18. Sandeep B.,, Vinod P.V.,, Uppuleti V.P., Venkata P. P., Debnath B., Stereo-conserved Synthesis of Syn-diarylheptanoids, Active principles of Zingiber, starting from D-glucose, Tetrahedron Letters. 2011, 52, 3397-3400.

19. Tao, F., Jia S., Ding, Z.H., Zheng, Y.T., Yan, L.,Ying, L., Liu, J.K., Chemical Constituents and Their Bioactivities of "Tongling White Ginger" (Zingiber officinale), J. Agric. Food Chem., 2011, 59, 11690-11695

20. Park, G., Eun, S.H., Shim, S.H., Chemical constituents from Curcuma zedoaria Biochemical Systematics and Ecology,2012, 40, 65-68,

21. XU, H., Dong, H., Sim, K., Labdane Diterpenes from Alpinia zerumbet, Phytochemistry, 1996, 42 (1), 149-151.

22. Patching, S.G., Baldwin, S.A., Baldwin, A.D., Young, J.D., Gallanger, M.P., Henderson, P., Herbert, R.B., The nucleoside transport proteins, NupC and NupG, from Escherichia coli: specific structural motifs necessary for the binding of ligands, Organic and Biomolecular Chem., 2005, 3(3), 462-470.

23. Akiyama, K., Kikuzaki, H., Aoki, T., Okuda, A., Lajis, N.H., Nakatani, N., Terpenoids and a Diarylheptanoid from Zingiber ottensit, J. Nat. Prod., 2006, 69, 1637-1640.

24. Yin, H., Luo, J., Kong, L., Tetracyclic Diterpenoids with Isomerized Isospongian Skeleton and Labdane Diterpenoids from the Fruits of Amomum kravanh, J. Nat. Prod., 2013, 76, 237-242.

25. Asaumi, S.; Kawakami, S.; Sugimoto, S.; Matsunami, K.; Otsuka, H.; Shinzato. Alkylated Benzoquinones: Ardisiaquinones AH from the Leaves of Ardisia quinquegona and Their Anti-Leishmania Activity. Chem. Pharm. Bull. 2018, 66, 757-63.

26. Jesse, W.-H.L.; Vederas, J.C. Drug Discovery and Natural Products: End of an Era or an Endless Frontier?. Science 2009, 325, 161-5.

27. Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629-61.

28. Salazar, M.O.; Ramallo, I.A.; Micheloni, O.; Sierra, M.G.; Furlan, R.L.E. Chemically engineered extracts: Bioactivity alteration through sulfonylation. Bioor. Med. Chem. Lett. 2009, 19, 5067-70.

29. Ramallo, I.A.; Salazar, M.O.; Mendez, L.; Furlan, R.L.E. Chemically Engineered Extracts: Source of Bioactive Compounds. Accounts of Chemical Research 2011, 44 (4), 241-50.

30. Lopez, S.N.; Ramallo, I.A.; Sierra, M.G.; Zacchino, S.A..; Furlan, R.L.E. Chemically engineered extracts as an alternative source of bioactive natural product-like compounds. PNAS. 2007, 104 (2), 441-4.

31. Wu, T.; Jiang, C.; Wang, L.; Morris-Natschke, S.L.; Miao, H.; Gu, L.; Xu, J.; Lee, K.H.; Gu, Q. 3,5-Diarylpryrazole Derivatives Obtained by Ammonolysis of the Total Flavonoids from Chrysanthemum indicum extract Show Potential for the Treatment of Alzheimer's Disease. J. Nat. Prod. 2015, 78, 1593-9.

32. Mendez, L.; Salazar, M.O.; Ramallo, I.A.; Furlan, R.L. E. Brominated extracts as Source of Bioactive Compounds. ACS Comb. Sci. 2011, 13, 200-4.

33. Kawamura, T.; Matsubara, K.; Otaka, H.; Tashiro, E.; Shindo, K.; Yanagita, R.C.; Irie, K. Generation of Unnatural Natural Product' library and identification of a small molecule inhibitor of XIAP. Bioorg. Med. Chem. 2011, 19, 4377-85.

34. Kikuchi, H.; Sakurai, K.; Oshima, Y. Development of Diversity-Enhanced Extracts of Curcuma zedoria and Their New Sesquiterpene-like Compounds. Org. Lett. 2014, 16, 1916-19.

35. Ramallo, I.A.; Sierra, M.G.; Furlan, R.L.E. Discovery of B-Glucosidase Inhibitors from a Chemically Engineered Extract Prepared through Ethanolysis. Medicinal Chemistry 2012, 8, 112-7.

36. Padalia, R.C.; Verma, R.S.; Sundaresan, V.; Chanotiya, C.S. Chemical Diversity in the Genus Alpinia (Zingiberaceae): Comparative Composition of Four Alpinia Species Grown in Northern India. Chemistry& Biodiversity 2010, 7, 2076-87.

37. Zhu, X.-L.; Yang, M.-H.; Luo, J.-G.; Huang, X.-F.; Kong, L.-Y. A New Phenylpropanoid from Alpinia galanga. Chinese Journal of Natural Medicines 2009, 7(1), 19-20.

38. Matsuda, H.; Morikawa, T.; Managi, H.; Yoshikawa, M. Antiallergic Principles from Alpinia galangal: Structural Requirements of Phenylpropanoids for Inhibition of Degranulation and Release of TNF-a and IL-4 in RBL-2H3 Cells. Bioorg. Med. Chem. 2003, 13, 3197-202.

39. Zhao, L.; Chen L.-Y.; Liang J.-Y. Two new phenylpropanoids isolated from the rhizomes of Alpinia galanga. Chinese Journal of Natural Medicines 2012, 10(5), 370-3.

40. Chourasiya, S.S.; Sreedhar, E.; Babu, K.S.; Shankaraia, N.; Nayak, L.; Ramakrishna, S.; Stavani, S.; Rao, B.M.V. Isolation, Synthesis and Biological Evaluation of Phenylpropanoids from the Rhizomes of Alpinia galanga. Natural Product Communications 2013, 8 (12), 1741-6.

41. Laksmi, S.; Sandra, S.; Rahul, B.S.; Saikant, B.; Vani, M.; Manoj, G.; Padmaja, G.; Remani, P. In vitro and in vivo studies of 5,7-dihydroxy flavones isolated from Alpinia galangal (L.) against human lung cancer and ascetic lymphoma. Med. Chem. Res. 2019, 28, 39-51.

42. Morikawa, T.; Ando, S.; Matsuda, H.; Kataoka, S.; Muraoka, O.; Yoshikawa, M. Inhibitors of Nitric Oxide Production from the Rhizomes of Alpinia galangal: Structures of New 8-9° Linked Neolignans and Sesquineolignan. Chem. Pharm. Bull. 2005, 53(6), 625-30.

43. Oonmetta-aree, J.; Suzuki, T.; Gasaluck, P.; Eumkeb, G. Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. LWT 2006, 39, 1214-20.

44. Gupta, P.; Bhatter, P.; D'souza, D.; Tolani, M.; Daswani, P.; Tetali, P.; Birdi, T. Evaluating the anti Mycobacterium tuberculosis activity of Alpinia galanga (L.) Willd. Axenically under reducing oxygen conditions and in intracellular assays. BMC Complementary and Alternative Medicine 2014, 14, 84-92.

45. Tang, X.; Xu, C.; Yagiz, Y.; Simonne, A.; Marshall, M.R. Phytochemical profiles, and antimicrobial and antioxidant activities of greater galangal [Aplinia galangal (Linn.) Swartz.] flowers. Food chem. 2018, 255, 300-8.

46. Chansriniyom, C.; Bunwatcharaphansakun, P.; Eaknai, W.; Nalinratana, N.; Ratanawong, A.; Khongkow, M.; Leuchapudiporn, R. A synergistic combination of Phyllanthus emblica and Alpinia galanga against H202-induced oxidative stress and lipid peroxidation in human ECV304 cells. Journal of Functional Foods 2018, 43, 44-54.

47. Singh, J.C.H.; Alagarsamy, V.; Diwan, P.V.; Kumar, S.S.; Nisha, J.C.; Reddy, Y.N. Neuroprotective effect of Alpinia galanga (L) fractions on Aß(s-35) induced amnesia in mice. Journal of Ethnopharmacology 2011, 138, 85-91.

48. Seo, J.-W.; Cho, S.-C.; Park, S.-J.; Lee, E.-J.; Lee, J.-H.; Han, S.-S.; Pyo, B.S.; Park, D.-H.; Kim, B.-H. 1°-Acetoxychavicol Acetate Isolated from Alpinia galangal Ameliorates Ovalbumin-Induced Asthma in Mice. PLOS one 2013, 8(2), e56447.

49. Yoshiaki, M; Ninomiya, K.; Nishi, R.; Kamei, I.; Katsuyama, Y.; Imagawa, T.; Chaipech, S.; Muraoka, O.; Morikawa, T. Melanogenesis inhibitory activity of a 7-0-9°-linked neolignan from Alpinia galanga fruit. Bioorg. Med. Chem. 2016, 24, 6215-24.

50. Thanh, B.L.; Claire, B.; Duc Trong, N.; Marie-Paule, M.; Joelle, Q.L. In vitro Anti-Leishmanial Activity of Essential Oils Extracted from Vietnamese Plants. Molecules 2017, 22, 1071-83.

51. Yang, D; Wong, M.-K. Yip, Y.-C. Epoxidation of Olefins Using Methyl(trifluoromethyl)dioxirane Generated in Situ. J. Org. Chem. 1995, 60(12), 3887-9.

52. Asaumi, S.; Kawakami, S.; Sugimoto, S.; Matsunami, K.; Otsuka, H.; Shinzato. Alkylated Benzoquinones: Ardisiaquinones A-H from the Leaves of Ardisia quinquegona and Their Anti-Leishmania Activity. Chem. Pharm. Bull. 2018, 66, 757-63.

53. Bernini, R.; Coratti, A.; Provenzano, G.; Fabrizi, G.; Tofani, D. Oxidation of aromatic aldehydes and ketones by H202/CH;ReO, in ionic liquids: a catalytic efficient reaction to achieve dihydric phenols. Tetrahedron 2005, 61, 1821-5.

54. Tao, P.; Meng, Q.-H.; Zhang, H.-F.; Zhang, C.-H.; Fang, N.-H. Analysis of impurities in 4-hydrobenzaldehyde by HPLC, combined with mass spectroscopy. Ranliao Yu Ranse 2005, 42 (60), 59-60.

55. Rivera-Chavez, J.; Figueroa, M.; Gonzalez, M.C.; Glenn, A.E.; Mata, R. a-Glucosidase Inhibitors from a Xylaria feejeensis Associated with Hintonia latiflora. J. Nat. Prod. 2015, 78, 730-5.

56. Hayano, K.; Mochizu, K. First Isolation and Determination of Three Humulene Triepoxides. Heterocycles 1997, 45 (8), 1573-7.

57. Swamy, P.; Kumar, M.A.; Reddy, M.M.; Naresh, M.; Srujana, K.; Narender, N. The vicinal functionalization of olefins: a facile route to the direct synthesis of B-chlorohydrins and B-chloroethers. RCS Adv. 2014, 4, 26288-94.

58. Takano, R.; Yoshida, M.; Inoue, M.; Honda, T.; Nakashima, R.; Matsumoto, K.; Yano, T.; Ogata, T.; Watanabe, N.; Hirouchi, M.; Kimura, T.; Toda, N. Optimization of 3-aryl-3-ethoxypropanoic acids and discovery of the potent GPR40 agonist DS-1558. Bioorg. Med.Chem. 2015, 23, 5546-65.

59. Zhang, Y.; Du, Y.; Iluang, Z.; Xu, J.; Wu, X.; Wang, Y.; Wang, M.; Yang, S.; Webster, R.D.; Chi, Y.R. N-Heterocyclic Carbene-Catalyzed Radical reactions for Highly Enantioselective B-Hydroxylation of Enals. J. Am. Chem. Soc. 2015, 137, 2416-9.

60. Hodgson, D.M.; Man, S. Synthesis of the Anti-HIV Agent (-)-Hyperolactone C by using Oxonium Ylide Formation- Rearrangement. Chem. Eur. J. 2011, 17, 9731-7.

61. Mc. Elhanon, J.R.; Wu, M.-J,; Escobar, M.; Chaudhry, U.; Hu, C.-L.; Mc.Grath, D.V. Asymmetric Synthesis of a Series of Chiral AB Monomers for Dendrimer Construction. J. Org. Chem. 1997, 62, 908-15.

62. Yoshimitsu, T.; Arano, Y.; Nagaoka, H.; Radical a C-Hydroxyalkylation of Ethers and Acetal. J. Org. Chem. 2005, 70, 2342-5.

63. Yang, X. W.; Li, S.-M.; Li, Y.-L.; Feng, L.; Shen, Y.- H.; Lin, S.; Tian, J.-M.; Zeng, H.-W.; Wang, N.; Steinmetz, A.; Liu, Y.; Zhang, W.-D. Chemical constituents of Abies delavayi. Phytochemistry 2014, 105, 164-70.

64. Li, Y.-L.; Gao, Y.-X.; Jin, H.-Z.; Shan, L.; Chang, W.-L.; Yang, X.-W.; Zeng. H. W.; Wang, N.; Steinmetz, A.; Zhang, W.-D. Chemical constituents of Abies fabri. Phytochemistry 2015, 117, 135-43.

65. Morikawa, T.; Ando, S.; Matsuda, H.; Kataka, S.; Muraoka, O.; Yoshikawa, M. Inhibitors of Nitric Oxide production from the Rhizomes of Alpinia galanga: Structures of New 8-9° Linked Neolignans and Sesquineolignan. Chem Pharm. Bull. 2005, 53 (6), 625-30.

66. Xu, J., ji, F., Wang, H., Li, S., Jin, D., Zhang, Q., Sun, H., Guo, Y., Absolute Configurations and NO Inhibitory Activities of Terpenoids from Curcuma longa, J. Agric.

Food. Chem. 2015, 63, 5805-5812.

67. Zhao, Q., Hao. X., Zou, C., Zhang, R., Hu, J., Norditerpenoids from Hedychium villosum, Natural Product Research and Development, 2009, 1, 10-12.

参考文献をもっと見る