リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Biomarker for Benign Adult Familial Myoclonus Epilepsy: High-Frequency Activities in Giant Somatosensory Evoked Potentials」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Biomarker for Benign Adult Familial Myoclonus Epilepsy: High-Frequency Activities in Giant Somatosensory Evoked Potentials

Tojima, Maya 京都大学 DOI:10.14989/doctor.k23774

2022.03.23

概要

【目的】良性成人型家族性ミオクローヌスてんかん(benign adult familial myoclonus epilepsy: BAFME)は,中年以降に皮質振戦と呼ばれる律動性の皮質性ミオクローヌス(cortical myoclonus: CM)と,稀発てんかん発作をきたす常染色体優性遺伝性の神経疾患で,日本で多くみられる.一般にCM の神経生理学的特徴の一つは,正中神経刺激による体性感覚誘発電位(somatosensory evoked potential: SEP)の早期皮質成分P25,N35 が高振幅となる巨大SEP であるが,CM をきたす疾患・病態をさらに鑑別するバイオマーカーは確立されていない.また,正常SEP の潜時20 ms 以降に高周波律動(high frequency oscillation: HFO)を認めるが,巨大SEP のP25 成分に重畳するHFO(P25-HFO)の有無や意義は検証されていない.P25-HFO が BAFME の診断バイオマーカーとなる可能性とその発生機構を検討した.

【方法】2008〜2018 年に京都大学医学部附属病院で正中神経刺激にて巨大SEP を認め, CMと臨床診断された症例を後方視的に検討した.巨大SEP 波形に400−1000Hz のbandpass filter を適応し,得られた律動波形が baseline の±4SD 以上の振幅で 4 回(2 周期)以上連続し,その終了潜時が22 ms 以降の場合にP25-HFO ありと定義した.臨床情報,SEP 所見を,1)BAFME 群と他の CM 群,および 2)P25-HFO の有無での 2 群,でそれぞれ比較した.3)さらに,1)でBAFME 群と他のCM 群で有意差のあった因子について,BAFME診断における正確性を算出した.

【結果】対象49 例(平均年齢55.8±18.3 歳)の内訳は,BAFME16 例,その他のCM33 例だった.1)BAFME 群は他の CM 群と比較して,不随意運動の発症年齢が有意に低く
(p=0.043),抗てんかん薬の使用率が高く(p=0.0035),巨大SEP のN35 振幅(p=0.0001), filter 適応後の波形の振幅最大値(p<0.0001)が高かった.BAFME 群は全例でP25-HFO を認め,他のCM 群より有意にその出現率が高かった(p<0.0001).2)一方,P25-HFO を認める患者群では有意に BAFME が多く(p<0.0001),不随意運動の罹病期間が長く
(p=0.0035),巨大 SEP のP25 振幅(p=0.01),N35 振幅(p<0.0001),filter 適応後の波形の振幅最大値(p<0.0001)が高かった.3)BAFME の診断正確性は,不随意運動の発症年齢,P25 振幅,N35 振幅,filter 適応後の波形の振幅最大値と比べて,P25-HFO で最も高かった(感度100%, 特異度87.9%, 陽性的中率80.0%, 陰性的中率100%).

【結論】正中神経刺激の巨大SEP に重畳するP25-HFO の存在はBAFME の診断を強く示唆した.P25-HFO は突発性脱分極変位である巨大P25 に起因する大脳皮質の過剰興奮性を反映し,かつ BAFME 患者において特異的に認めたことから,その発生機構は BAFME の特徴である皮質振戦の律動性との関連が示唆された.

この論文で使われている画像

参考文献

1. Striano P, Zara F, Striano S. Autosomal dominant cortical tremor, myoclonus and epilepsy: many syndromes, one phenotype. Acta Neurol Scand 2005;111:211–217.

2. van den Ende T, Sharifi S, van der Salm SMA, van Rootselaar AF. Familial cortical myoclonic tremor and epilepsy, an enigmatic disor- der: from phenotypes to pathophysiology and genetics. A systematic review. Tremor Other Hyperkinet Mov 2018;8:503.

3. Ikeda A, Kakigi R, Funai N, Neshige R, Kuroda Y, Shibasaki H. Cortical tremor: a variant of cortical reflex myoclonus. Neurology 1990;40:1561–1565.

4. Shibasaki H, Yamashita Y, Neshige R, Tobimatsu S, Fukui R. Path- ogenesis of giant somatosensory evoked potentials in progressive myoclonic epilepsy. Brain 1985;108:225–240.

5. Kobayashi K, Hitomi T, Matsumoto R, Watanabe M, Takahashi R, Ikeda A. Nationwide survey in Japan endorsed diagnostic criteria of benign adult familial myoclonus epilepsy. Seizure 2018;61:14–22.

6. Hitomi T, Ikeda A, Kondo T, et al. Increased cortical hyper- excitability and exaggerated myoclonus with aging in benign adult familial myoclonus epilepsy. Mov Disord 2011;26:1509–1514.

7. van Rootselaar AF, van Schaik IN, van den Maagdenberg AM, Koelman JH, Callenbach PM, Tijssen MA. Familial cortical myoclonic tremor with epilepsy: a single syndromic classification for a group of ped- igrees bearing common features. Mov Disord 2005;20:665–673.

8. Ishiura H, Doi K, Mitsui J, et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet 2018;50:581–590.

9. Cen Z, Jiang Z, Chen Y, et al. Intronic pentanucleotide TTTCA repeat insertion in the SAMD12 gene causes familial cortical myo- clonic tremor with epilepsy type 1. Brain 2018;141:2280–2288.

10. Corbett MA, Kroes T, Veneziano L, et al. Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nat Commun 2019;10:4920.

11. Florian RT, Kraft F, Leitao E, et al. Unstable TTTTA/TTTCA expansions in MARCH6 are associated with familial adult myo- clonic epilepsy type 3. Nat Commun 2019;10:4919.

12. Latorre A, Rocchi L, Magrinelli F, et al. Unravelling the enigma of cortical tremor and other forms of cortical myoclonus. Brain 2020; 143:2653–2663.

13. Bragin A, Engel J Jr, Wilson CL, Fried I, Mathern GW. Hippocam- pal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 1999;40:127–137.

14. Jirsch JD, Urrestarazu E, LeVan P, Olivier A, Dubeau F, Gotman J. High-frequency oscillations during human focal seizures. Brain 2006;129:1593–1608.

15. Urrestarazu E, Chander R, Dubeau F, Gotman J. Interictal high- frequency oscillations (100-500 Hz) in the intracerebral EEG of epi- leptic patients. Brain 2007;130:2354–2366.

16. Cracco RQ, Cracco JB. Somatosensory evoked potential in man: far field potentials. Electroencephalogr Clin Neurophysiol 1976;41:460–466.

17. Mauguière F, Garcia-Larrea L. Somatosensory and pain evoked potentials: normal responses, abnormal waveforms, and clinical applications in neurological diseases. In: Schomer DL, Lopes da Silva FH, eds. Niedermeyer’s Electroencephalography: Basic Princi- ples, Clinical Applications, and Related Fields. 7th ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2018: 1071–1104.

18. Mochizuki H, Ugawa Y. High-frequency oscillations in somatosen- sory system. Clin EEG Neurosci 2005;36:278–284.

19. Ozaki I, Hashimoto I. Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex. Clin Neurophysiol 2011;122:1908–1923.

20. Nakano S, Hashimoto I. The later part of high-frequency oscilla- tions in human somatosensory evoked potentials is enhanced in aged subjects. Neurosci Lett 1999;276:83–86.

21. Mochizuki H, Ugawa Y, Machii K, et al. Somatosensory evoked high-frequency oscillation in Parkinson’s disease and myoclonus epi- lepsy. Clin Neurophysiol 1999;110:185–191.

22. Alegre M, Urriza J, Valencia M, Muruz´abal J, Iriarte J, Artieda J. High-frequency oscillations in the somatosensory evoked potentials of patients with cortical myoclonus: pathophysiologic implications. J Clin Neurophysiol 2006;23:265–272.

23. Ozaki I, Suzuki C, Yaegashi Y, Baba M, Matsunaga M, Hashimoto I. High frequency oscillations in early cortical somato- sensory evoked potentials. Electroencephalogr Clin Neurophysiol 1998;108:536–542.

24. Oi K, Neshige S, Hitomi T, et al. Low-dose perampanel improves refractory cortical myoclonus by the dispersed and suppressed par- oxysmal depolarization shifts in the sensorimotor cortex. Clin Neurophysiol 2019;130:1804–1812.

25. Kobayashi K, Matsumoto R, Kondo T, et al. Decreased cortical excit- ability in Unverricht-Lundborg disease in the long-term follow-up: a consecutive SEP study. Clin Neurophysiol 2011;122:1617–1621.

26. Kobayashi K, Hitomi T, Matsumoto R, et al. Long-term follow-up of cortical hyperexcitability in Japanese Unverricht-Lundborg dis- ease. Seizure 2014;23:746–750.

27. Caviness JN. Myoclonus and neurodegenerative disease—what’s in a name? Parkinsonism Relat Disord 2003;9:185–192.

28. Ikeda A, Shibasaki H, Tashiro K, Mizuno Y, Kimura J. Clinical trial of piracetam in patients with myoclonus: nationwide multiinstitution study in Japan. The Myoclonus/Piracetam Study Group. Mov Dis- ord 1996;11:691–700.

29. Ikeda A, Shibasaki H, Nagamine T, et al. Peri-rolandic and frontoparietal components of scalp-recorded giant SEPs in cortical myoclonus. Electroencephalogr Clin Neurophysiol 1995;96:300–309.

30. Yamada T, Kameyama S, Fuchigami Y, Nakazumi Y, Dickins QS, Kimura J. Changes of short latency somatosensory evoked potential in sleep. Electroencephalogr Clin Neurophysiol 1988;70:126–136.

31. Nakano S, Hashimoto I. High-frequency oscillations in human somatosensory evoked potentials are enhanced in school children. Neurosci Lett 2000;291:113–116.

32. Murakami T, Sakuma K, Nakashima K. Somatosensory evoked potentials and high-frequency oscillations in athletes. Clin Neurophysiol 2008;119:2862–2869.

33. Endisch C, Waterstraat G, Storm C, Ploner CJ, Curio G, Leithner C. Cortical somatosensory evoked high-frequency (600Hz) oscillations predict absence of severe hypoxic encephalopathy after resuscitation. Clin Neurophysiol 2016;127:2561–2569.

34. Klostermann F, Funk T, Vesper J, Curio G. Spatiotemporal charac- teristics of human intrathalamic high-frequency (>400Hz) SEP com- ponents. Neuroreport 1999;10:3627–3631.

35. Jiruska P, Alvarado-Rojas C, Schevon CA, et al. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia 2017;58:1330–1339.

36. Urrestarazu E, Jirsch JD, LeVan P, et al. High-frequency intracere- bral EEG activity (100-500 Hz) following interictal spikes. Epilepsia 2006;47:1465–1476.

37. Br´azdil M, Pail M, Hal´amek J, et al. Very high-frequency oscilla- tions: novel biomarkers of the epileptogenic zone. Ann Neurol 2017;82:299–310.

38. Witte OW, Speckmann EJ, Walden J. Motor cortical epileptic foci in vivo: actions of a calcium channel blocker on paroxysmal neuronal depolarizations. Electroencephalogr Clin Neurophysiol 1987;66:43–55.

39. Haueisen J, Heuer T, Nowak H, et al. The influence of lorazepam on somatosensory-evoked fast frequency (600 Hz) activity in MEG. Brain Res 2000;874:10–14.

40. Terada K, Ikeda A, Mima T, et al. Familial cortical myoclonic tremor as a unique form of cortical reflex myoclonus. Mov Disord 1997;12:370–377.

41. van Rootselaar AF, van den Maagdenberg AMJM, Depienne C, Tijssen MAJ. Pentameric repeat expansions: cortical myoclonus or cortical tremor? Brain 2020;143:e86.

42. Toro C, Pascual-Leone A, Deuschl G, Tate E, Pranzatelli MR, Hallett M. Cortical tremor. A common manifestation of cortical myoclonus. Neurology 1993;43:2346–2353.

43. Elia M, Musumeci SA, Ferri R, et al. Familial cortical tremor, epi- lepsy, and mental retardation: a distinct clinical entity? Arch Neurol 1998;55:1569–1573.

44. Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013;80:496–503.

45. Caballol N, Navarro-Otano J, A´vila A, et al. Myoclonus-dominant corticobasal degeneration. Mov Disord Clin Pract 2018;5:649–652.46. van Rootselaar AF, Aronica E, Jansen Steur EN, Rozemuller-Kwakkel JM, de Vos RA, Tijssen MA. Familial cortical tremor with epilepsy and cerebel- lar pathological findings. Mov Disord 2004;19:213–217.

47. van Rootselaar AF, van der Salm SM, Bour LJ, et al. Decreased cor- tical inhibition and yet cerebellar pathology in ‘familial cortical myoclonic tremor with epilepsy’. Mov Disord 2007;22:2378–2385.

48. Striano P, Caranci F, Di Benedetto R, Tortora F, Zara F, Striano S. (1) H-MR spectroscopy indicates prominent cerebellar dysfunction in benign adult familial myoclonic epilepsy. Epilepsia 2009;50:1491–1497.

49. Buijink AW, Broersma M, van der Stouwe AM, et al. Cerebellar atrophy in cortical myoclonic tremor and not in hereditary essential tremor-a voxel-based morphometry study. Cerebellum 2016;15:696–704.

50. Long L, Zeng LL, Song Y, et al. Altered cerebellar-cerebral func- tional connectivity in benign adult familial myoclonic epilepsy. Epilepsia 2016;57:941–948.

51. Zelmann R, Lina JM, Schulze-Bonhage A, Gotman J, Jacobs J. Scalp EEG is not a blur: it can see high frequency oscillations although their generators are small. Brain Topogr 2014;27:683–704.

52. Gliske SV, Stacey WC, Lim E, Holman KA, Fink CG. Emergence of narrowband high frequency oscillations from asynchronous, uncoupled neural firing. Int J Neural Syst 2017;27:1650049.

参考文献をもっと見る