リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Resting Heart Rate Variability Is Associated With Subsequent Orthostatic Hypotension: Comparison Between Healthy Older People and Patients With Rapid Eye Movement Sleep Behavior Disorder.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Resting Heart Rate Variability Is Associated With Subsequent Orthostatic Hypotension: Comparison Between Healthy Older People and Patients With Rapid Eye Movement Sleep Behavior Disorder.

SUMI Yukiyoshi 10772923 0000-0001-6775-0883 NAKAYAMA Chikao KADOTANI Hiroshi 90362516 0000-0001-7474-3315 MATSUO Masahiro 70456838 OZEKI Yuji 90303768 0000-0002-9516-0941 KINOSHITA Takafumi GOTO Yuki KANO Manabu YAMAKAWA Toshitaka HASEGAWA-OHIRA Masako 40616190 OGAWA Keiko FUJIWARA Koichi 10642514 0000-0002-2929-0561 滋賀医科大学

2020.11.23

概要

Background:
Orthostatic hypotension (OH) caused by autonomic dysfunction is a common symptom in older people and patients with idiopathic rapid eye movement sleep behavior disorder (iRBD). The orthostatic challenge test is a standard autonomic function test that measures a decrease of blood pressure during a postural change from supine to standing positions. Although previous studies have reported that changes in heart rate variability (HRV) are associated with autonomic dysfunction, no study has investigated the relationship between HRV before standing and the occurrence of OH in an orthostatic challenge test. This study aims to examine the connection between HRV in the supine position and the occurrence of OH in an orthostatic challenge test.
Methods:
We measured the electrocardiograms of patients with iRBD and healthy older people during an orthostatic challenge test, in which the supine and standing positions were held for 15 min, respectively. The subjects were divided into three groups: healthy controls (HC), OH-negative iRBD [OH (–) iRBD], and OH-positive iRBD [OH (+) iRBD]. HRV measured in the supine position during the test were calculated by time-domain analysis and Poincaré plots to evaluate the autonomic dysfunction.
Results:
Forty-two HC, 12 OH (–) iRBD, and nine OH (+) iRBD subjects were included. HRV indices in the OH (–) and the OH (+) iRBD groups were significantly smaller than those in the HC group. The multivariate logistic regression analysis for OH identification for the iRBD groups showed the model whose inputs were the HRV indices, i.e., standard deviation 2 (SD2) and the percentage of adjacent intervals that varied by more than 50 ms (pNN50), had a receiver operating characteristic curve with area under the curve of 0.840, the sensitivity to OH (+) of 1.000, and the specificity to OH (–) of 0.583 (p = 0.023).
Conclusions:
This study showed the possibility that short-term HRV indices in the supine position would predict subsequent OH in iRBD patients. Our results are of clinical importance in terms of showing the possibility that OH can be predicted using only HRV in the supine position without an orthostatic challenge test, which would improve the efficiency and safety of testing.

この論文で使われている画像

参考文献

8. Juraschek SP, Daya N, Rawlings AM, Appel LJ, Miller ER 3rd,

Windham BG, et al. Association of history of dizziness and longterm adverse outcomes with early vs later orthostatic hypotension

assessment times in middle-aged adults. JAMA Intern Med. (2017)

177:1316–23. doi: 10.1001/jamainternmed.2017.2937

9. Shibao C, Lipsitz LA, Biaggioni I. Evaluation and treatment of

orthostatic hypotension. J Am Soc Hypertens. (2013) 7:317–24.

doi: 10.1016/j.jash.2013.04.006

10. Metzler M, Duerr S, Granata R, Krismer F, Robertson D, Wenning

GK. Neurogenic orthostatic hypotension: pathophysiology, evaluation, and

management. J Neurol. (2013) 260:2212–9. doi: 10.1007/s00415-012-6736-7

11. Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. Chronic behavioral

disorders of human REM sleep: a new category of parasomnia. Sleep. (1986)

9:293–308. doi: 10.1093/sleep/9.2.293

12. Plazzi G, Corsini R, Provini F, Pierangeli G, Martinelli P, Montagna P, et al.

REM sleep behavior disorders in multiple system atrophy. Neurology. (1997)

48:1094–7. doi: 10.1212/WNL.48.4.1094

13. Gagnon JF, Bedard MA, Fantini ML, Petit D, Panisset M, Rompre S, et al. REM

sleep behavior disorder and REM sleep without atonia in Parkinson’s disease.

Neurology. (2002) 59:585–9. doi: 10.1212/WNL.59.4.585

14. Boeve BF, Silber MH, Ferman TJ. REM sleep behavior disorder in Parkinson’s

disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol. (2004)

17:146–57. doi: 10.1177/0891988704267465

15. Boeve BF. REM sleep behavior disorder: updated review of the core features,

the REM sleep behavior disorder-neurodegenerative disease association,

1. Tilvis RS, Hakala SM, Valvanne J, Erkinjuntti T. Postural hypotension

and dizziness in a general aged population: a four-year followup of the Helsinki Aging Study. J Am Geriatr Soc. (1996)

44:809–14. doi: 10.1111/j.1532-5415.1996.tb03738.x

2. Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni

I, et al. Consensus statement on the definition of orthostatic hypotension,

neurally mediated syncope and the postural tachycardia syndrome. Clin

Auton Res. (2011) 21:69–72. doi: 10.1007/s10286-011-0119-5

3. Frith J. Diagnosing orthostatic hypotension: a narrative review of the

evidence. Br Med Bull. (2015) 115:123–34. doi: 10.1093/bmb/ldv025

4. Mol A, Bui Hoang PTS, Sharmin S, Reijnierse EM, van Wezel RJA,

Meskers CGM, et al. Orthostatic hypotension and falls in older adults: a

systematic review and meta-analysis. J Am Med Dir Assoc. (2019) 20:589–97

e585. doi: 10.1016/j.jamda.2018.11.003

5. Low PA, Tomalia VA. Orthostatic hypotension: mechanisms, causes,

management. J Clin Neurol. (2015) 11:220–6. doi: 10.3988/jcn.2015.

11.3.220

6. Raj SR. What is the optimal orthostatic stress to diagnose orthostatic

hypotension? Clin Auton Res. (2005) 15:67–8. doi: 10.1007/s10286-005-0265-8

7. Brignole M, Moya A, de Lange FJ, Deharo JC, Elliott PM, Fanciulli

A, et al. 2018 ESC Guidelines for the diagnosis and management

of syncope. Eur Heart J. (2018) 39:1883–948. doi: 10.5603/KP.2018.

0161

Frontiers in Neurology | www.frontiersin.org

13

November 2020 | Volume 11 | Article 567984

Sumi et al.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Resting HRV Associated With OH

34. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D,

et al. Diagnosis and management of dementia with Lewy bodies: fourth

consensus report of the DLB Consortium. Neurology. (2017) 89:88–100.

doi: 10.1212/WNL.0000000000004058

35. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ,

et al. Second consensus statement on the diagnosis of multiple system atrophy.

Neurology. (2008) 71:670–6. doi: 10.1212/01.wnl.0000324625.00404.15

36. Iranzo A, Santamaria J. Severe obstructive sleep apnea/hypopnea

mimicking REM sleep behavior disorder. Sleep. (2005) 28:203–

6. doi: 10.1093/sleep/28.2.203

37. Teman PT, Tippmann-Peikert M, Silber MH, Slocumb NL, Auger

RR. Idiopathic rapid-eye-movement sleep disorder: associations with

antidepressants, psychiatric diagnoses, and other factors, in relation to age of

onset. Sleep Med. (2009) 10:60–5. doi: 10.1016/j.sleep.2007.11.019

38. Piskorski J, Guzik P. Filtering Poincaré plots. Comput Methods Sci Technol.

(2005) 11:39–48. doi: 10.12921/cmst.2005.11.01.39-48

39. Allen DP. A frequency domain Hampel filter for blind rejection of sinusoidal

interference from electromyograms. J Neurosci Methods. (2009) 177:303–

10. doi: 10.1016/j.jneumeth.2008.10.019

40. Young HA, Cousins AL, Watkins HT, Benton D. Is the link between depressed

mood and heart rate variability explained by disinhibited eating and diet? Biol

Psychol. (2017) 123:94–102. doi: 10.1016/j.biopsycho.2016.12.001

41. Yamasaki Y, Kodama M, Matsuhisa M, Kishimoto M, Ozaki

H, Tani A, et al. Diurnal heart rate variability in healthy

subjects: effects of aging and sex difference. Am J Physiol. (1996)

271:H303–10. doi: 10.1152/ajpheart.1996.271.1.H303

42. Young HA, Benton D. Heart-rate variability: a biomarker to study the

influence of nutrition on physiological and psychological health? Behav

Pharmacol. (2018) 29:140–51. doi: 10.1097/FBP.0000000000000383

43. Dahms C, Guenther A, Schwab M, Schultze T, Nowack S, Hoyer

D, et al. Dysautonomia in prodromal alpha-synucleinopathy: peripheral

versus central autonomic degeneration. Eur J Neurol. (2016) 23:878–

90. doi: 10.1111/ene.12957

44. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ.

Hemodynamic regulation: investigation by spectral analysis. Am J Physiol.

(1985) 249:H867–75. doi: 10.1152/ajpheart.1985.249.4.H867

45. Bekheit S, Tangella M, el-Sakr A, Rasheed Q, Craelius W, El-Sherif N. Use of

heart rate spectral analysis to study the effects of calcium channel blockers

on sympathetic activity after myocardial infarction. Am Heart J. (1990)

119:79–85. doi: 10.1016/S0002-8703(05)80085-7

46. Cook JR, Thomas Bigger J, Kleiger RE, Fleiss JL, Steinman RC, Rolnitzky LM.

Effect of atenolol and diltiazem on heart period variability in normal persons.

J Am Coll Cardiol. (1991) 17:480–4. doi: 10.1016/S0735-1097(10)80119-6

47. Halliwill JR, Billman GE. Effect of general anesthesia on cardiac vagal tone.

Am J Physiol. (1992) 262:H1719–24. doi: 10.1152/ajpheart.1992.262.6.H1719

48. Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS.

Heart rate variability: a review. Med Biol Eng Comput. (2006) 44:1031–

51. doi: 10.1007/s11517-006-0119-0

49. Lanier JB, Mote MB, Clay EC. Evaluation and management of orthostatic

hypotension. Am Fam Physician. (2011) 84:527–36. Available online at:

https://www.aafp.org/afp/2011/0901/afp20110901p527.pdf

50. Folstein MF, Folstein SE, McHugh PR. Mini-mental state. J Psychiatric Res.

(1975) 12:189–98. doi: 10.1016/0022-3956(75)90026-6

51. Stiasny-Kolster K, Mayer G, Schafer S, Moller JC, Heinzel-Gutenbrunner

M, Oertel WH. The REM sleep behavior disorder screening

questionnaire–a new diagnostic instrument. Mov Disord. (2007)

22:2386–93. doi: 10.1002/mds.21740

52. Skorvanek M, Feketeova E, Kurtis MM, Rusz J, Sonka K. Accuracy

of rating scales and clinical measures for screening of rapid eye

movement sleep behavior disorder and for predicting conversion to

Parkinson’s disease and other synucleinopathies. Front Neurol. (2018)

9:376. doi: 10.3389/fneur.2018.00376

53. Miyamoto T, Miyamoto M, Iwanami M, Kobayashi M, Nakamura M,

Inoue Y, et al. The REM sleep behavior disorder screening questionnaire:

validation study of a Japanese version. Sleep Med. (2009) 10:1151–

4. doi: 10.1016/j.sleep.2009.05.007

54. Yamakawa T, Fujiwara K, Miyajima M, Abe E, Kano M, Ueda Y. Realtime heart rate variability monitoring employing a wearable telemeter and

evolving concepts, controversies, and future directions. Ann N Y Acad Sci.

(2010) 1184:15–54. doi: 10.1111/j.1749-6632.2009.05115.x

Plomhause L, Dujardin K, Duhamel A, Delliaux M, Derambure P,

Defebvre L, et al. Rapid eye movement sleep behavior disorder in

treatment-naive Parkinson disease patients. Sleep Med. (2013) 14:1035–

7. doi: 10.1016/j.sleep.2013.04.018

Poryazova R, Oberholzer M, Baumann CR, Bassetti CL. REM sleep behavior

disorder in Parkinson’s disease: a questionnaire-based survey. J Clin Sleep

Med. (2013) 9:55–9A. doi: 10.5664/jcsm.2340

Fantini ML, Ferini-Strambi L, Montplaisir J. Idiopathic REM sleep behavior

disorder: toward a better nosologic definition. Neurology. (2005) 64:780–

6. doi: 10.1212/01.WNL.0000152878.79429.00

Yao C, Fereshtehnejad SM, Dawson BK, Pelletier A, Gan-Or Z, Gagnon JF,

et al. Longstanding disease-free survival in idiopathic REM sleep behavior

disorder: is neurodegeneration inevitable? Parkinsonism Relat Disord. (2018)

54:99–102. doi: 10.1016/j.parkreldis.2018.04.010

Galbiati A, Verga L, Giora E, Zucconi M, Ferini-Strambi L. The risk of

neurodegeneration in REM sleep behavior disorder: a systematic review

and meta-analysis of longitudinal studies. Sleep Med Rev . (2019) 43:37–

46. doi: 10.1016/j.smrv.2018.09.008

McCarter SJ, Gehrking TL, St Louis EK, Suarez MD, Boeve BF, Silber MH,

et al. Autonomic dysfunction and phenoconversion in idiopathic REM sleep

behavior disorder. Clin Auton Res. (2020) 30:207–13. doi: 10.1007/s10286020-00674-5

Mendoza-Velasquez

JJ,

Flores-Vazquez

JF,

Barron-Velazquez

E, Sosa-Ortiz AL, Illigens BW, Siepmann T. Autonomic

dysfunction

in

alpha-synucleinopathies.

Front

Neurol.

(2019)

10:363. doi: 10.3389/fneur.2019.00363

Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic

dysfunction in Parkinson’s disease: the SCOPA-AUT. Mov Disord. (2004)

19:1306–12. doi: 10.1002/mds.20153

Iranzo A, Santamaria J, Tolosa E. Idiopathic rapid eye movement

sleep

behaviour

disorder:

diagnosis,

management,

and

the

need for neuroprotective interventions. Lancet Neurol. (2016)

15:405–19. doi: 10.1016/S1474-4422(16)00057-0

Barone DA, Henchcliffe C. Rapid eye movement sleep behavior disorder

and the link to alpha-synucleinopathies. Clin Neurophysiol. (2018) 129:1551–

64. doi: 10.1016/j.clinph.2018.05.003

Postuma RB, Iranzo A, Hu M, Hogl B, Boeve BF, Manni R, et al.

Risk and predictors of dementia and parkinsonism in idiopathic REM

sleep behaviour disorder: a multicentre study. Brain. (2019) 142:744−59.

doi: 10.1093/brain/awz030

Miyamoto T, Miyamoto M, Inoue Y, Usui Y, Suzuki K, Hirata K.

Reduced cardiac 123I-MIBG scintigraphy in idiopathic REM sleep behavior

disorder. Neurology. (2006) 67:2236–8. doi: 10.1212/01.wnl.0000249313.25

627.2e

Miyamoto T, Miyamoto M, Suzuki K, Nishibayashi M, Iwanami M,

Hirata K. 123I-MIBG cardiac scintigraphy provides clues to the underlying

neurodegenerative disorder in idiopathic REM sleep behavior disorder. Sleep.

(2008) 31:717–23. doi: 10.1093/sleep/31.5.717

Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, et al.

Power spectral analysis of heart rate and arterial pressure variabilities as a

marker of sympatho-vagal interaction in man and conscious dog. Circ Res.

(1986) 59:178–93. doi: 10.1161/01.RES.59.2.178

Postuma RB, Lanfranchi PA, Blais H, Gagnon JF, Montplaisir JY. Cardiac

autonomic dysfunction in idiopathic REM sleep behavior disorder. Mov

Disord. (2010) 25:2304–10. doi: 10.1002/mds.23347

Postuma RB, Montplaisir J, Lanfranchi P, Blais H, Rompre S, Colombo R,

et al. Cardiac autonomic denervation in Parkinson’s disease is linked to REM

sleep behavior disorder. Mov Disord. (2011) 26:1529–33. doi: 10.1002/mds.

23677

Sauvageot N, Vaillant M, Diederich NJ. Reduced sympathetically

driven heart rate variability during sleep in Parkinson’s disease:

a case-control polysomnography-based study. Mov Disord. (2011)

26:234–40. doi: 10.1002/mds.23479

Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J. Epidemiology

and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol.

(2011) 26(Suppl. 1):S1–58. doi: 10.1007/s10654-011-9581-6

Frontiers in Neurology | www.frontiersin.org

14

November 2020 | Volume 11 | Article 567984

Sumi et al.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Resting HRV Associated With OH

a smartphone. In: Signal and Information Processing Association Annual

Summit and Conference (APSIPA), 2014 Asia-Pacific. (2014). p. 1–4.

Fujiwara K, Miyajima M, Yamakawa T, Abe E, Suzuki Y, Sawada Y, et al.

Epileptic seizure prediction based on multivariate statistical process control

of heart rate variability features. IEEE Trans Biomed Eng. (2016) 63:1321–

32. doi: 10.1109/TBME.2015.2512276

Sannino G, Melillo P, Stranges S, De Pietro G, Pecchia L. Short

term heart rate variability to predict blood pressure drops due to

standing: a pilot study. BMC Med Inform Decis Mak. (2015) 15(Suppl.

3):S2. doi: 10.1186/1472-6947-15-S3-S2

Conen D, Adam M, Roche F, Barthelemy JC, Felber Dietrich

D, Imboden M, et al. Premature atrial contractions in the

general population: frequency and risk factors. Circulation. (2012)

126:2302–8. doi: 10.1161/CIRCULATIONAHA.112.112300

Callans DJ. Premature ventricular contraction-induced cardiomyopathy.

Arrhythm Electrophysiol Rev. (2017) 6:153–5. doi: 10.15420/aer.2017/6.4/EO1

Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincare

plot geometry reflect nonlinear features of heart rate variability? IEEE Trans

Biomed Eng. (2001) 48:1342–7. doi: 10.1109/10.959330

Kamen PW, Krum H, Tonkin AM. Poincare plot of heart rate variability

allows quantitative display of parasympathetic nervous activity in humans.

Clin Sci. (1996) 91:201–8. doi: 10.1042/cs0910201

Shaffer F, Ginsberg JP. An overview of heart rate variability metrics

and norms. Front Public Health. (2017) 5:258. doi: 10.3389/fpubh.2017.

00258

Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J. Heart rate variability from

24-hour electrocardiography and the 2-year risk for sudden death. Circulation.

(1993) 88:180–5. doi: 10.1161/01.CIR.88.1.180

Manfrini O, Pizzi C, Trere D, Fontana F, Bugiardini R. Parasympathetic

failure and risk of subsequent coronary events in unstable angina and nonST-segment elevation myocardial infarction. Eur Heart J. (2003) 24:1560–

6. doi: 10.1016/S0195-668X(03)00345-2

Guzik P, Piskorski J, Krauze T, Schneider R, Wesseling KH, Wykretowicz

A, et al. Correlations between the Poincare plot and conventional heart rate

variability parameters assessed during paced breathing. J Physiol Sci. (2007)

57:63–71. doi: 10.2170/physiolsci.RP005506

Hoshi RA, Pastre CM, Vanderlei LC, Godoy MF. Poincare plot indexes of

heart rate variability: relationships with other nonlinear variables. Auton

Neurosci. (2013) 177:271–4. doi: 10.1016/j.autneu.2013.05.004

Goshvarpour A, Abbasi A, Goshvarpour A. Indices from lagged

poincare plots of heart rate variability: an efficient nonlinear tool

for emotion discrimination. Australas Phys Eng Sci Med. (2017)

40:277–87. doi: 10.1007/s13246-017-0530-x

Cohen J. Statistical Power Analysis for the Behavioral Sciences Second Edition.

Burlington, NJ: Routledge (2013).

Rosenthal R. Parametric measures of effect size. In: Cooper H, Hedges LV,

editors. The Handbook of Research Synthesis. New York, NY: Russell Sage

Foundation (1994). p. 231–44.

Youden WJ. Index for rating diagnostic tests. Cancer. (1950) 3:32–

5. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3

Rocchi C, Placidi F, Liguori C, Del Bianco C, Lauretti B, Diomedi M,

et al. Daytime autonomic activity in idiopathic rapid eye movement

sleep behavior disorder: a preliminary study. Sleep Med. (2018) 52:163–

7. doi: 10.1016/j.sleep.2018.08.023

Sacre JW, Jellis CL, Marwick TH, Coombes JS. Reliability of heart rate

variability in patients with type 2 diabetes mellitus. Diabet Med. (2012)

29:e33–40. doi: 10.1111/j.1464-5491.2011.03557.x

Tang ZH, Zeng F, Li Z, Zhou L. Association and predictive value

analysis for resting heart rate and diabetes mellitus on cardiovascular

Frontiers in Neurology | www.frontiersin.org

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

autonomic neuropathy in general population. J Diabetes Res. (2014)

2014:215473. doi: 10.1155/2014/215473

Li X, Zhou Z, Jia S, Hou C, Zheng W, Rong P, et al. Cognitive study on Chinese

patients with idiopathic REM sleep behavior disorder. J Neurol Sci. (2016)

366:82–6. doi: 10.1016/j.jns.2016.04.047

Lee H, Cho YW, Kim HA. The severity and pattern of autonomic dysfunction

in idiopathic rapid eye movement sleep behavior disorder. Mov Disord. (2015)

30:1843–8. doi: 10.1002/mds.26416

Frauscher B, Nomura T, Duerr S, Ehrmann L, Gschliesser V, Wenning

GK, et al. Investigation of autonomic function in idiopathic REM sleep

behavior disorder. J Neurol. (2012) 259:1056–61. doi: 10.1007/s00415-0116298-0

Postuma RB, Pelletier A, Berg D, Gagnon JF, Escudier F,

Montplaisir J. Screening for prodromal Parkinson’s disease in the

general community: a sleep-based approach. Sleep Med. (2016)

21:101–5. doi: 10.1016/j.sleep.2015.12.016

Sumi Y, Matsuo M, Nakabayashi T, Masuda F, Takahashi M, Kanemura

T, et al. Changes in the symptom frequency of rapid eye movement sleep

behavior disorder according to disease duration. Sleep Sci Pract. (2017)

1:16. doi: 10.1186/s41606-017-0017-4

Zygmunt A, Stanczyk J. Methods of evaluation of autonomic nervous system

function. Arch Med Sci. (2010) 6:11–8. doi: 10.5114/aoms.2010.13500

Buijs RM, Escobar C, Swaab DF. The circadian system and the balance

of the autonomic nervous system. Handb Clin Neurol. (2013) 117:173–

91. doi: 10.1016/B978-0-444-53491-0.00015-8

Okada M, Kakehashi M. Effects of outdoor temperature on changes in

physiological variables before and after lunch in healthy women. Int J

Biometeorol. (2014) 58:1973–81. doi: 10.1007/s00484-014-0800-1

Niu SW, Huang JC, Chen SC, Lin HY, Kuo IC, Wu PY, et al.

Association between age and changes in heart rate variability after

hemodialysis in patients with diabetes. Front Aging Neurosci. (2018)

10:43. doi: 10.3389/fnagi.2018.00043

Xie H, Wang Y, Tao S, Huang S, Zhang C, Lv Z. Wearable sensorbased daily life walking assessment of gait for distinguishing individuals

with amnestic mild cognitive impairment. Front Aging Neurosci. (2019)

11:285. doi: 10.3389/fnagi.2019.00285

Novak P. Orthostatic cerebral hypoperfusion syndrome. Front Aging Neurosci.

(2016) 8:22. doi: 10.3389/fnagi.2016.00022

Conflict of Interest: HK’s laboratory is supported by a donation from Fukuda

Lifetech Co., Ltd., Fukuda Life Tech Keiji Co., Ltd., Tanaka Sleep Clinic, Akita

Sleep Clinic, and Ai Care Co., Ltd. to the Shiga University of Medical Science. HK

received a grant from Merck Sharp & Dohme Corp/MSD K.K. (the InvestigatorInitiated Studies Program). The opinions expressed in this paper are those of

the authors and do not necessarily represent those of Merck Sharp & Dohme

Corp/MSD K.K. KF, TY, and MK participate in Quadlytics Inc.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Sumi, Nakayama, Kadotani, Matsuo, Ozeki, Kinoshita, Goto,

Kano, Yamakawa, Hasegawa-Ohira, Ogawa and Fujiwara. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

15

November 2020 | Volume 11 | Article 567984

...

参考文献をもっと見る