リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Room-temperature hyperpolarization of polycrystalline samples with optically polarized triplet electrons: pentacene or nitrogen-vacancy center in diamond?」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Room-temperature hyperpolarization of polycrystalline samples with optically polarized triplet electrons: pentacene or nitrogen-vacancy center in diamond?

Miyanishi, Koichiro Segawa, Takuya F. Takeda, Kazuyuki Ohki, Izuru Onoda, Shinobu Ohshima, Takeshi Abe, Hiroshi Takashima, Hideaki Takeuchi, Shigeki Shames, Alexander I. Morita, Kohki Wang, Yu So, Frederick T.-K. Terada, Daiki Igarashi, Ryuji Kagawa, Akinori Kitagawa, Masahiro Mizuochi, Norikazu Shirakawa, Masahiro Negoro, Makoto 京都大学 DOI:10.5194/mr-2-33-2021

2021

概要

We demonstrate room-temperature ¹³C hyperpolarization by dynamic nuclear polarization (DNP) using optically polarized triplet electron spins in two polycrystalline systems: pentacene-doped [carboxyl-¹³C] benzoic acid and microdiamonds containing nitrogen-vacancy (NV−) centers. For both samples, the integrated solid effect (ISE) is used to polarize the ¹³C spin system in magnetic fields of 350–400 mT. In the benzoic acid sample, the ¹³C spin polarization is enhanced by up to 0.12 % through direct electron-to-¹³C polarization transfer without performing dynamic ¹H polarization followed by ¹H−¹³C cross-polarization. In addition, the ISE has been successfully applied to polarize naturally abundant ¹³C spins in a microdiamond sample to 0.01 %. To characterize the buildup of the ¹³C polarization, we discuss the efficiencies of direct polarization transfer between the electron and ¹³C spins as well as that of ¹³C−¹³C spin diffusion, examining various parameters which are beneficial or detrimental for successful bulk dynamic ¹³C polarization.

この論文で使われている画像

参考文献

Abrams, D., Trusheim, M. E., Englund, D. R., Shattuck, M. D., and Meriles, C. A.: Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond, Nano Lett., 14, 2471–2478, https://doi.org/10.1021/nl500147b, 2014.

Acosta, V., Jarmola, A., Bauch, E., and Budker, D.: Optical proper- ties of the nitrogen-vacancy singlet levels in diamond, Phys. Rev. B, 82, 201202, https://doi.org/10.1103/PhysRevB.82.201202, 2010.

Ajoy, A., Liu, K., Nazaryan, R., Lv, X., Zangara, P. R., Safvati, B., Wang, G., Arnold, D., Li, G., Lin, A., Raghavan, P., Druga, E., Dhomkar, S., Pagliero, D., Reimer, J. A., Suter, D., Meriles, C. A., and Pines, A.: Orientation-independent room temperature optical 13C hyperpolarization in powdered diamond, Sci. Adv., 4, eaar5492, https://doi.org/10.1126/sciadv.aar5492, 2018a.

Ajoy, A., Nazaryan, R., Liu, K., Lv, X., Safvati, B., Wang, G., Druga, E., Reimer, J. A., Suter, D., Ramanathan, C., Meriles,

C. A., and Pines, A.: Enhanced dynamic nuclear polarization via swept microwave frequency combs, P. Natl. Acad. Sci. USA, 115, 10576–10581, https://doi.org/10.1073/pnas.1807125115, 2018b.

Ajoy, A., Safvati, B., Nazaryan, R., Oon, J. T., Han, B., Ragha-van, P., Nirodi, R., Aguilar, A., Liu, K., Cai, X., Lv, X., Druga, E., Ramanathan, C., Reimer, J. A., Meriles, C. A., Suter, D., and Pines, A.: Hyperpolarized relaxometry based nuclear T1 noise spectroscopy in diamond, Nat. Commun., 10, 5160, https://doi.org/10.1038/s41467-019-13042-3, 2019.

Ajoy, A., Nazaryan, R., Druga, E., Liu, K., Aguilar, A., Han, B., Gierth, M., Oon, J. T., Safvati, B., Tsang, R., Walton, J. H., Suter, D., Meriles, C. A., Reimer, J. A., and Pines, A.: Room temperature “optical nanodiamond hyperpolarizer”: Physics, design, and operation, Rev. Sci. Instrum., 91, 023106, https://doi.org/10.1063/1.5131655, 2020.

Álvarez, G. A., Bretschneider, C. O., Fischer, R., London, P., Kanda, H., Onoda, S., Isoya, J., Gershoni, D., and Frydman, L.: Local and bulk 13C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations, Nat. Com- mun., 6, 8456, https://doi.org/10.1038/ncomms9456, 2015.

Ardenkjær-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., Servin, R., Thaning, M., and Gol- man, K.: Increase in signal-to-noise ratio of > 10 000 times in liquid-state NMR, P. Natl. Acad. Sci. USA, 100, 10158–10163, https://doi.org/10.1073/pnas.1733835100, 2003.

Awschalom, D. D. and Flatté, M. E.: Challenges for semiconductor spintronics, Nat. Phys., 3, 153–159, https://doi.org/10.1038/nphys551, 2007.

Can, T. V., Weber, R. T., Walish, J. J., Swager, T. M., and Griffin, R. G.: Frequency-Swept Integrated Solid Effect, Angew. Chem. Int. Edit., 56, 6744–6748, https://doi.org/10.1021/acs.jpclett.8b01002, 2017.

Casabianca, L. B., Shames, A. I., Panich, A. M., Shenderova, O., and Frydman, L.: Factors affecting DNP NMR in polycrys- talline diamond samples, J. Phys. Chem. C, 115, 19041–19048, https://doi.org/10.1021/jp206167j, 2011.

Chen, J., Lourette, S., Rezai, K., Hoelzer, T., Lake, M., Nesladek, M., Bouchard, L.-S., Hemmer, P., and Budker, D.: Optical quenching and recovery of photoconductivity in single-crystal diamond, Appl. Phys. Lett., 110, 011108, https://doi.org/10.1063/1.4973692, 2017.

Chen, Q., Schwarz, I., Jelezko, F., Retzker, A., and Ple- nio, M. B.: Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles, Phys. Rev. B, 92, 184420, https://doi.org/10.1103/PhysRevB.92.184420, 2015.

Corval, A., Kryschi, C., Astilean, S., and Trommsdorff, H. P.: Res- onant intersystem crossing in pentacene, J. Phys. Chem., 98, 7376–7381, https://doi.org/10.1021/j100081a024, 1994.

Deimling, M., Brunner, H., Dinse, K., Hausser, K., and Colpa, J.: Microwave-induced optical nuclear polarization (MI-ONP), K. Miyanishi et al.: Room-temperature hyperpolarization: pentacene or NV center in diamond? 47

J. Magn. Reson., 39, 185–202, https://doi.org/10.1016/0022-2364(80)90128-6, 1980.

Doherty, M. W., Manson, N. B., Delaney, P., Jelezko, F., Wrachtrup, J., and Hollenberg, L. C.: The nitrogen- vacancy colour centre in diamond, Phys. Rep., 528, 1–45, https://doi.org/10.1016/j.physrep.2013.02.001, 2013.

Fischer, R., Bretschneider, C. O., London, P., Budker, D., Gershoni, D., and Frydman, L.: Bulk Nuclear Polarization Enhanced at Room Temperature by Optical Pumping, Phys. Rev. Lett., 111, 057601, https://doi.org/10.1103/PhysRevLett.111.057601, 2013. Gruber, A., Dräbenstedt, A., Tietz, C., Fleury, L., Wrachtrup, J., and von Borczyskowski, C.: Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science, 276, 2012–2014, https://doi.org/10.1126/science.276.5321.2012, 1997.

He, X.-F., Manson, N. B., and Fisk, P. T.: Paramagnetic reso- nance of photoexcited N-V defects in diamond, I. Level anti- crossing in the 3A ground state, Phys. Rev. B, 47, 8809–8815, https://doi.org/10.1103/PhysRevB.47.8809, 1993.

Henstra, A., Lin, T.-S., Schmidt, J., and Wenckebach, W.: High dy- namic nuclear polarization at room temperature, Chem. Phys. Lett., 165, 6–10, https://doi.org/10.1016/0009-2614(90)87002-9, 1990.

Jelezko, F., Gaebel, T., Popa, I., Gruber, A., and Wrachtrup, J.: Observation of Coherent Oscillations in a Sin- gle Electron Spin, Phys. Rev. Lett., 92, 076401, https://doi.org/10.1103/PhysRevLett.92.076401, 2004.

Kagawa, A., Murokawa, Y., Takeda, K., and Kitagawa, M.: Opti- mization of 1H spin density for dynamic nuclear polarization us- ing photo-excited triplet electron spins, J. Magn. Reson., 197, 9–13, https://doi.org/10.1016/j.jmr.2008.11.009, 2009.

Kagawa, A., Negoro, M., Ohba, R., Ichijo, N., Takamine, K., Nakamura, Y., Murata, T., Morita, Y., and Kitagawa, M.: Dy- namic Nuclear Polarization using Photoexcited Triplet Electron Spins in Eutectic Mixtures, J. Phys. Chem. A, 122, 9670–9675, https://doi.org/10.1021/acs.jpca.8b09934, 2018.

Kagawa, A., Miyanishi, K., Ichijo, N., Negoro, M., Nakamura, Y., Enozawa, H., Murata, T., Morita, Y., and Kitagawa, M.: High- field NMR with dissolution triplet-DNP, J. Magn. Reson., 309, 106623, https://doi.org/10.1016/j.jmr.2019.106623, 2019.

King, J. P., Coles, P. J., and Reimer, J. A.: Optical polarization of 13C nuclei in diamond through ni- trogen vacancy centers, Phys. Rev. B, 81, 073201, https://doi.org/10.1103/PhysRevB.81.073201, 2010.

King, J. P., Jeong, K., Vassiliou, C. C., Shin, C. S., Page, R. H., Avalos, C. E., Wang, H.-J., and Pines, A.: Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond, Nat. Commun., 6, 8965, https://doi.org/10.1038/ncomms9965, 2015.

Köhler, J., Disselhorst, J., Donckers, M., Groenen, E., Schmidt, J., and Moerner, W.: Magnetic resonance of a single molecular spin, Nature, 363, 242–244, https://doi.org/10.1038/363242a0, 1993.

Lesage, A., Lelli, M., Gajan, D., Caporini, M. A., Vitzthum, V., Miéville, P., Alauzun, J., Roussey, A., Thieuleux, C., Mehdi, A., Bodenhausen, G., Copéret, C., and Emsley, L.: Surface enhanced NMR spectroscopy by dynamic nu- clear polarization, J. Am. Chem. Soc., 132, 15459–15461, https://doi.org/10.1021/ja104771z, 2010.

Loretz, M., Takahashi, H., Segawa, T. F., Boss, J. M., and Degen, C. L.: Optical hyperpolarization of nitrogen donor spins in bulk diamond, Phys. Rev. B, 95, 064413, https://doi.org/10.1103/PhysRevB.95.064413, 017.

Lowe, I. J. and Gade, S.: Density-Matrix Derivation of the Spin-Diffusion Equation, Phys. Rev., 156, 817–825, https://doi.org/10.1103/PhysRev.156.817, 1967.

Maly, T., Debelouchina, G. T., Bajaj, V. S., Hu, K.-N., Joo, C.- G., Mak-Jurkauskas, M. L., Sirigiri, J. R., van der Wel, P. C., Herzfeld, J., Temkin, R. J., and Griffin, R. G.: Dynamic nu- clear polarization at high magnetic fields, J. Chem. Phys., 128, 052211, https://doi.org/10.1063/1.2833582, 2008.

Mehring, M.: Principles of High Resolution NMR in Solids, Springer, Berlin, Heidelberg, Germany, 344 pp., https://doi.org/10.1007/978-3-642-68756-3, 1983.

Mindarava, Y. L., Blinder, R., Liu, Y., Scheuer, J., Lang, J., Agafonov, V. N., Davydov, V. A., Laube, C., Knolle, W., Abel, B., Naydenov, B., and Jelezko, F.: Synthesis and coher- ent properties of 13C enriched sub-micron diamond particles with nitrogen vacancy color centers, Carbon, 165, 395–403, https://doi.org/10.1016/j.carbon.2020.04.071, 2020.

Negoro, M., Nakayama, K., Tateishi, K., Kagawa, A., Takeda, K., and Kitagawa, M.: 2H-decoupling-accelerated 1H spin diffusion in dynamic nuclear polarization with photoexcited triplet electrons, J. Chem. Phys., 133, 154504, https://doi.org/10.1063/1.3493453, 2010.

Negoro, M., Kagawa, A., Tateishi, K., Tanaka, Y., Yuasa, T., Takahashi, K., and Kitagawa, M.: Dissolution dynamic nuclear polarization at room temperature using photoex- cited triplet electrons, J. Phys. Chem. A, 122, 4294–4297, https://doi.org/10.1021/acs.jpca.8b01415, 2018.

Nelson, S. J., Kurhanewicz, J., Vigneron, D. B., Larson, P. E., Harzstark, A. L., Ferrone, M., Van Criekinge, M., Chang, J. W., Bok, R., Park, I., Reed, G., Carvajal, L., Small, E. J., Munster, P., Weinberg, V. K., Ardenkjaer-Larsen, J. H., Chen, A. P., Hurd, R. E., Odegardstuen, L.-I., Robb, F. J., Tropp, J., and Murray, J. A.: Metabolic imaging of patients with prostate cancer using hy- perpolarized [1 13C] pyruvate, Sci. Transl. Med., 5, 198ra108, https://doi.org/10.1126/scitranslmed.3006070, 2013.

Nishimura, K., Kouno, H., Tateishi, K., Uesaka, T., Ideta, K., Kimizuka, N., and Yanai, N.: Triplet dynamic nuclear polarization of nanocrystals dispersed in water at room temperature, Phys. Chem. Chem. Phys., 21, 16408–16412, https://doi.org/10.1039/c9cp03330k, 2019.

Nishimura, K., Kouno, H., Kawashima, Y., Orihashi, K., Fujiwara, S., Tateishi, K., Uesaka, T., Kimizuka, N., and Yanai, N.: Materials chemistry of triplet dynamic nuclear polarization, Chem. Commun., 56, 7217–7232. https://doi.org/10.1039/D0CC02258F, 2020.

Overhauser, A. W.: Polarization of Nuclei in Metals, Phys. Rev., 92, 411–415, https://doi.org/10.1103/PhysRev.92.411, 1953.

Parker, A. J., Jeong, K., Avalos, C. E., Hausmann, B. J., Vassil- iou, C. C., Pines, A., and King, J. P.: Optically pumped dynamic nuclear hyperpolarization in 13C-enriched diamond, Phys. Rev.

B, 100, 041203, https://doi.org/10.1103/PhysRevB.100.041203,

2019.

Peng, W. K., Takeda, K., and Kitagawa, M.: A new technique for cross polarization in solid-state NMR compatible with high spin-

48 K. Miyanishi et al.: Room-temperature hyperpolarization: pentacene or NV center in diamond? ning frequencies and high magnetic fields, Chem. Phys. Lett., 417, 58–62, https://doi.org/10.1016/j.cplett.2005.10.012, 2006.

Rogers, L., Armstrong, S., Sellars, M., and Manson, N.: In- frared emission of the NV centre in diamond: Zeeman and uniaxial stress studies, New J. Phys., 10, 103024, https://doi.org/10.1088/1367-2630/10/10/103024, 2008.

Scheuer, J., Schwartz, I., Chen, Q., Schulze-Sünninghausen, D., Carl, P., Höfer, P., Retzker, A., Sumiya, H., Isoya, J., Luy, B., Plenio, M. B., Naydenov, B., and Jelezko, F.: Optically induced dynamic nuclear spin polarisation in diamond, New J. Phys., 18, 013040, https://doi.org/10.1088/1367-2630/18/1/013040, 2016.

Segawa, T. F. and Shames, A. I.: How to Identify, At- tribute, and Quantify Triplet Defects in Ensembles of Small Nanoparticles, J. Phys. Chem. Lett., 11, 7438–7442, https://doi.org/10.1021/acs.jpclett.0c01922, 2020.

Segawa, T. F., Doll, A., Pribitzer, S., and Jeschke, G.: Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy, J. Chem. Phys., 143, 044201, https://doi.org/10.1063/1.4927088, 2015.

Sosnovsky, D. V. and Ivanov, K. L.: Magnetic field depen- dence of triplet-state ONP: theoretical analysis in terms of level anti-crossings, Mol. Phys., 117, 2740–2755, https://doi.org/10.1080/00268976.2018.1504996, 2019.

Stehlik, D. and Vieth, H.-M.: Time evolution of electron-nuclear cross-polarization in radiofrequency induced optical nuclear spin polarization, in: Pulsed Magnetic Resonance: NMR, ESR, and Optics: A Recognition of Hahn, E. L., edited by: Bagguley,

D. M. S., Oxford University Press, Oxford, UK, 446–477, 1992. Stoll, S. and Schweiger, A.: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, J. Magn. Reson., 178, 42–55, https://doi.org/10.1016/j.jmr.2005.08.013, 2006.

Takeda, K.: Triplet State Dynamic Nuclear Polarization: Basics, Concepts, Methods, VDM Verlag Dr. Mueller, Saarbrücken, Ger- many, 172 pp., 2009.

Takeda, K., Takegoshi, K., and Terao, T.: Dynamic nu- clear polarization by photoexcited-triplet electron spins in polycrystalline samples, Chem. Phys. Lett., 345, 166–170, https://doi.org/10.1016/S0009-2614(01)00840-5, 2001.

Tateishi, K., Negoro, M., Nishida, S., Kagawa, A., Morita, Y., and Kitagawa, M.: Room temperature hyperpolarization of nu- clear spins in bulk, P. Natl. Acad. Sci. USA, 111, 7527–7530, https://doi.org/10.1073/pnas.1315778111, 2014.

Tateishi, K., Negoro, M., Nonaka, H., Kagawa, A., Sando, S., Wada, S., Kitagawa, M., and Uesaka, T.: Dynamic nu- clear polarization with photo-excited triplet electrons using 6,13 diphenylpentacene, Phys. Chem. Chem. Phys., 21, 19737–19741, https://doi.org/10.1039/C9CP00977A, 2019.

Terada, D., Segawa, T. F., Shames, A. I., Onoda, S., Ohshima, T., Osawa, E., Igarashi, R., and Shirakawa, M.: Monodis- perse Five-Nanometer-Sized Detonation Nanodiamonds En- riched in Nitrogen-Vacancy Centers, ACS Nano, 13, 6461–6468, https://doi.org/10.1021/acsnano.8b09383, 2019.

Thiering, G. and Gali, A.: Theory of the optical spin-polarization loop of the nitrogen-vacancy center in diamond, Phys. Rev. B, 98, 085207, https://doi.org/10.1103/PhysRevB.98.085207, 2018. van Kesteren, H. W., Wenckebach, W. T., Schmidt, J., and Poulis, N.: Dynamic nuclear polarization of proton spins via pho- toexcited triplet states: the system phenanthrene in fluorene, Chem. Phys. Lett., 89, 67–70, https://doi.org/10.1016/0009-2614(82)83344-7, 1982.

van Kesteren, H. W., Wenckebach, W. T., and Schmidt, J.: Pro- duction of High, Long-Lasting, Dynamic Proton Polarization by Way of Photoexcited Triplet States, Phys. Rev. Lett., 55, 1642– 1644, https://doi.org/10.1103/PhysRevLett.55.1642, 1985.

Wenckebach, W. T.: Essentials of dynamic nuclear polariza- tion, Spindrift Publications, Burgh-Haamstede, The Netherlands, 296 pp., 2016.

Wrachtrup, J., von Borczyskowski, C., Bernard, J., Or- rit, M., and Brown, R.: Optical detection of magnetic resonance in a single molecule, Nature, 363, 244–245, https://doi.org/10.1038/363244a0, 1993.

Yap, Y. S., Tabuchi, Y., Negoro, M., Kagawa, A., and Kitagawa, M.: A Ku band pulsed electron paramagnetic resonance spectrome- ter using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures, Rev. Sci. Instrum., 86, 063110, https://doi.org/10.1063/1.4922791, 2015.

Yu, H.-L., Lin, T.-S., Weissman, S., and Sloop, D. J.: Time resolved studies of pentacene triplets by electron spin echo spectroscopy,

J. Chem. Phys., 80, 102–107, https://doi.org/10.1063/1.446491, 1984.

参考文献をもっと見る