リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on the Fundamental Properties of HfO_2-based Ferroelectric Thin Films for Ferroelectric-gate FET Applications」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on the Fundamental Properties of HfO_2-based Ferroelectric Thin Films for Ferroelectric-gate FET Applications

高田 賢志 大阪府立大学 DOI:info:doi/10.24729/00017346

2021.04.20

概要

In this thesis, the fundamental physical properties of HfO2-based thin films, which are necessary to discuss the potential of FeFETs based on HfO2-based ferroelectric thin films as Beyond-CMOS devices such as steep slope FETs and neuromorphic devices, were investigated.

In Chapter 2, we investigate the physical origin of the steep slope of the drain current in the subthreshold region in NCFETs by performing simulations. At a ferroelectric/semiconductor junction, as a result of the remanent polarization of the ferroelectric layer, an additional voltage that originates from the depolarization field is applied to the ferroelectric layer immediately before the polarization switching. Because this additional applied voltage decreases during polarization switching before the formation of the depletion layer, the negative capacitance emerges because of the reduction in the total voltage applied to the ferroelectric layer during polarization switching (i.e., 𝜕𝐷ி/𝜕𝑉ி becomes negative). At the instant when polarization switching occurs, a depletion layer is formed on the surface of the semiconductor. Therefore, the voltage that is applied to the ferroelectric layer is distributed to the semiconductor immediately during polarization switching, thus resulting in the negative capacitance and a steep slope in the drain current in the subthreshold region below 60 mV/decade.

In Chapter 3, the conditions for formation of the metastable ferroelectric phase in the HfO2-based thin films were investigated. HfO2-based thin films were sputtered on Si substrates using an oxide target at various O2 partial pressures. The results indicate that the O2 partial pressure has a significant effect on the crystal growth process and causes structural changes in the sputtered films. At higher O2 partial pressures above 1 mPa, where the sputtering state maintains the oxide mode, the most stable m-phase was formed during deposition for all films, even when the deposition process was carried out without heating. For deposition at lower O2 partial pressures, the sputtering state was in the metal mode and the films became amorphous. After annealing, the o/t phase appeared in the films that were deposited at the low O2 partial pressures and the o/t fraction was dependent on the O2 partial pressure. From these results and the changes in the d-spaces of the films observed at different O2 partial pressures, it appears that the number of oxygen vacancies varies with the changes in the O2 partial pressure. These results indicate that the O2 partial pressure during deposition continued to have an effect on the film growth process and led to structural changes even after the annealing process. In addition, the effect of the annealing conditions on stabilization of the ferroelectric phase in HfO2-based films was investigated. The ferroelectric o-phase was hardly formed with use of the postdeposition annealing treatment, even though the doping amount was appropriate for formation of the metastable phase. In contrast, improvements in the ferroelectricity were observed in post-metallization annealing-treated HfO2-based films because of the increase in their o-phase component. This occurs because the capping layer prevents the transition from the t-phase to the m-phase during the cooling process, resulting in a transition from the t-phase to the o-phase. Furthermore, although it has been known for some time that the effect of cap annealing is to suppress formation of the m-phase, the present experimental results clearly show that the presence of the cap layer also affects the stabilization of the o-phase.

In Chapter 4, direct piezoelectric measurement was employed to investigate the state of polarization during the retention and wake-up process without applying an electric field. In addition, the correlation between ferroelectric properties and the imprint is investigated by evaluating the time-domain imprint in Hf0.5Zr0.5O2 (HZO) films. The polarization-electric field hysteresis loop of a sputtered Hf0.5Zr0.5O2 (HZO) film with a thickness of 10 nm showed the time-dependent imprint at room temperature during the polarization retention, in which the internal electric field that generates the imprint increased gradually from 0.05 mV/cm to 0.6 mV/cm. While a space charge density of more than 1 C/cm2 is required to form such an internal electric field, it was found that the magnitude of the direct piezoelectric response did not change at all during the polarization retention. On the other hand, both the remanent polarization and direct piezoelectric response increased during the wake-up process. From the difference in the time variation of these two characteristics, we concluded that the nonferroelectric layer exists at the interface between the HZO film and TaN electrode and transitions gradually to ferroelectric phases through the electric field cycle. In addition, the correlation between ferroelectric properties and the imprint was investigated by evaluating the time-domain imprint in Hf0.5Zr0.5O2(HZO) thin films with various ferroelectric properties. The amount of redistributed charge, which causes imprint during polarization retention, is affected by the remanent polarization of ferroelectric layer, suggesting the depolarization field corresponding to the remanent polarization generates and works as a driving force of charge redistribution. The time-domain measurements of imprint distinguish the charge redistribution processes with the origins which have different time constants. In addition, the correlation of the amount of redistributed charge and the dielectric relaxation of the HZO films is discussed. there are the correlation the redistributed charge and the dielectric relaxation, indicating that the mobile charge contributes the time-dependent imprint.

In Chapter 5, growth of epitaxial Y-doped HfO2 thin films was attempted on Si substrates using pulsed laser deposition (PLD). By optimizing the oxygen pressure, epitaxial HfO2:Y films were grown on (001)Si and (111)Si substrates using the PLD method. Although the exact crystal structures could not be confirmed, epitaxial growth of the metastable phase of HfO2 on the Si substrates was confirmed. The polarization axis of the HfO2:Y film grown epitaxially on the (001) Si substrate was oriented in the in-plane direction. Therefore, it is believed that use of (111) Si substrates is required to realize polarization switching. In the case of deposition under a high vacuum, Hf silicides were formed by diffusion of Hf into the Si substrate. In contrast, in the case of deposition at an oxygen pressure of 1 mTorr, the formation of an interfacial layer due to the diffusion of oxygen inhibited the diffusion of Hf. Therefore, it is considered to be important to suppress the formation of Hf silicides while maintaining epitaxial growth by adding a small amount of oxygen during the deposition process.

In Chapter 6, the results obtained and associated discussions from throughout my doctoral thesis are summarized.

この論文で使われている画像

参考文献

Chapter1

1 S. Salahuddin and S. Datta, Nano Lett. 8, 405 (2008).

2 S. Oh, T. Kim, M. Kwak, J. Song, J. Woo, S. Jeon, I.K. Yoo, and H. Hwang, IEEE Electron Device Lett. 38, 732 (2017).

3 X. Chen, K. Ni, M.T. Niemier, D. Reis, X. Sun, P. Wang, S. Datta, X.S. Hu, X. Yin, M. Jerry, S. Yu, and A.F. Laguna, IEEE Des. Test 37, 79 (2020).

4 Shu-Yau Wu, IEEE Trans. Electron Devices 21, 499 (1974).

5 E.Z. Farsa, A. Ahmadi, M.A. Maleki, M. Gholami, and H.N. Rad, IEEE Trans. Circuits Syst. II Express Briefs 66, 1582 (2019).

6 H. Akinaga and H. Shima, Proc. IEEE 98, 2237 (2010).

7 Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, in 2008 IEEE Int. Electron Devices Meet. (IEEE, 2008), pp. 1–4.

8 A. Calderoni, S. Sills, and N. Ramaswamy, in 2014 IEEE 6th Int. Mem. Work. (IEEE, 2014), pp. 1–4.

9 Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, and K. Aono, in 2011 Int. Electron Devices Meet. (IEEE, 2011), pp. 31.4.1-31.4.4.

10 H.-S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, and K.E. Goodson, Proc. IEEE 98, 2201 (2010)

11 S. Lai, in IEEE Int. Electron Devices Meet. 2003 (IEEE, n.d.), pp. 10.1.1-10.1.4.

12 G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R.S. Shenoy, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 28, 223 (2010).

13 S. Sakai, R. Ilangovan, and M. Takahashi, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 43, 7876 (2004).

14 D. Ito, N. Fujimura, T. Yoshimura, and T. Ito, J. Appl. Phys. 93, 5563 (2003).

15 Y. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, and Y. Tarui, Jpn. J. Appl. Phys. 33, 5172 (1994).

16 P. Wurfel and I.P. Batra, Phys. Rev. B 8, 5126 (1973).

17 D.J. Kim, J.Y. Jo, Y.S. Kim, Y.J. Chang, J.S. Lee, J.-G. Yoon, T.K. Song, and T.W. Noh, Phys. Rev. Lett. 95, 237602 (2005).

18 T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Appl. Phys. Lett. 99, 102903 (2011).

19 J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, Nano Lett. 12, 4318 (2012).

20 R. Materlik, C. Künneth, and A. Kersch, J. Appl. Phys. 117, 134109 (2015).

21 M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K. Do Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C.S. Hwang, Adv. Mater. 27, 1811 (2015).

22 E.H. Kisi, J. Am. Ceram. Soc. 81, 741 (1998).

23 M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang, Appl. Phys. Lett. 102, 242905 (2013).

24 P. Polakowski and J. Müller, Appl. Phys. Lett. 106, 232905 (2015).

25 E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A.P. Graham, T. Melde, U. Schröder, and T. Mikolajick, Thin Solid Films 533, 88 (2013).

26 U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M.I. Popovici, S. V. Kalinin, and T. Mikolajick, Jpn. J. Appl. Phys. 53, 08LE02 (2014).

27 R. Batra, T.D. Huan, G.A. Rossetti, and R. Ramprasad, Chem. Mater. 29, 9102 (2017).

28 S. Clima, D.J. Wouters, C. Adelmann, T. Schenk, U. Schroeder, M. Jurczak, and G. Pourtois, Appl. Phys. Lett. 104, 092906 (2014).

29 M.H. Park, T. Schenk, C.M. Fancher, E.D. Grimley, C. Zhou, C. Richter, J.M. Lebeau, J.L. Jones, T. Mikolajick, and U. Schroeder, J. Mater. Chem. C 5, 4677 (2017).

30 L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi, J. Appl. Phys. 122, 124104 (2017).

31 M.H. Park, T. Schenk, M. Hoffmann, S. Knebel, J. Gärtner, T. Mikolajick, and U. Schroeder, Nano Energy 36, 381 (2017).

32 X. Liu, L. Yao, Y. Cheng, B. Xiao, M. Liu, and W. Wang, Appl. Phys. Lett. 115, 152901 (2019).

33 S.J. Kim, D. Narayan, J.-G. Lee, J. Mohan, J.S. Lee, J. Lee, H.S. Kim, Y.-C. Byun, A.T. Lucero, C.D. Young, S.R. Summerfelt, T. San, L. Colombo, and J. Kim, Appl. Phys. Lett. 111, 242901 (2017).

34 T. Olsen, U. Schröder, S. Müller, A. Krause, D. Martin, A. Singh, J. Müller, M. Geidel, and T. Mikolajick, Appl. Phys. Lett. 101, 082905 (2012).

35 T. Nishimura, L. Xu, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi, Jpn. J. Appl. Phys. 55, 08PB01 (2016).

36 A. Pal, V.K. Narasimhan, S. Weeks, K. Littau, D. Pramanik, and T. Chiang, Appl. Phys. Lett. 110, 022903 (2017).

37 T. Mittmann, F.P.G. Fengler, C. Richter, M.H. Park, T. Mikolajick, and U. Schroeder, Microelectron. Eng. 178, 48 (2017).

38 T. Mittmann, M. Materano, P.D. Lomenzo, M.H. Park, I. Stolichnov, M. Cavalieri, C. Zhou, C. Chung, J.L. Jones, T. Szyjka, M. Müller, A. Kersch, T. Mikolajick, and U. Schroeder, Adv. Mater. Interfaces 1900042, 1900042 (2019).

39 T. Mimura, T. Shimizu, and H. Funakubo, Appl. Phys. Lett. 115, 032901 (2019).

40 M.G. KIM and S. OHMI, IEICE Trans. Electron. E102.C, 435 (2019).

41 S. Mueller, J. Muller, U. Schroeder, and T. Mikolajick, IEEE Trans. Device Mater. Reliab. 13, 93 (2013).

42 A.G. Chernikova, M.G. Kozodaev, D. V. Negrov, E. V. Korostylev, M.H. Park, U. Schroeder, C.S. Hwang, and A.M. Markeev, ACS Appl. Mater. Interfaces 10, 2701 (2018).

43 Y.A. Genenko, J. Glaum, M.J. Hoffmann, and K. Albe, Mater. Sci. Eng. B 192, 52 (2015).

44 S.S. Fields, S.W. Smith, P.J. Ryan, S.T. Jaszewski, I.A. Brummel, A. Salanova, G. Esteves, S.L. Wolfley, M.D. Henry, P.S. Davids, and J.F. Ihlefeld, ACS Appl. Mater. Interfaces 12, 26577 (2020).

45 T. Lu, Y. Tian, A. Studer, Q. Li, R.L. Withers, L. Jin, D. Yu, Z. Xu, X. Wei, and Y. Liu, Chem. Mater. 32, 6456 (2020).

46 F.P.G. Fengler, M. Hoffmann, S. Slesazeck, T. Mikolajick, and U. Schroeder, J. Appl. Phys. 123, 204101 (2018).

47 P. Buragohain, A. Erickson, P. Kariuki, T. Mittmann, C. Richter, P.D. Lomenzo, H. Lu, T. Schenk, T. Mikolajick, U. Schroeder, and A. Gruverman, ACS Appl. Mater. Interfaces 11, 35115 (2019).

48 Y. Higashi, B. Kaczer, A.S. Verhulst, B.J. O’Sullivan, N. Ronchi, S.R.C. McMitchell, K. Banerjee, L. Di Piazza, M. Suzuki, D. Linten, and J. Van Houdt, IEEE Trans. Electron Devices 67, 4911 (2020).

49 F. Mo, T. Saraya, T. Hiramoto, and M. Kobayashi, Appl. Phys. Express 13, 074005 (2020).

50 C. Zacharaki, P. Tsipas, S. Chaitoglou, L. Bégon-Lours, M. Halter, and A. Dimoulas, Appl. Phys. Lett. 117, 212905 (2020).

51 N.F. Kenshi, Takada, M, Murase, S. Migita, Y. Morita, H. Ota, T. Yoshimura, (n.d.).

52 D. Zhou, J. Xu, Q. Li, Y. Guan, F. Cao, X. Dong, J. Müller, T. Schenk, and U. Schröder, Appl. Phys. Lett. 103, 192904 (2013).

53 P.D. Lomenzo, Q. Takmeel, C. Zhou, C.M. Fancher, E. Lambers, N.G. Rudawski, J.L. Jones, S. Moghaddam, and T. Nishida, J. Appl. Phys. 117, 134105 (2015).

54 J.C. Choi, M.S. Song, K. Lee, K. Park, J. Park, H. Lee, J.H. Lee, and S.C. Chae, Curr. Appl. Phys. 20, 746 (2020).

55 A. Shekhawat, G. Walters, C.-C. Chung, R. Garcia, Y. Liu, J. Jones, T. Nishida, and S. Moghaddam, ECS J. Solid State Sci. Technol. 9, 024011 (2020).

56 A. Chouprik, M. Spiridonov, S. Zarubin, R. Kirtaev, V. Mikheev, Y. Lebedinskii, S. Zakharchenko, and D. Negrov, ACS Appl. Electron. Mater. 1, 275 (2019).

57 M. Grossmann, O. Lohse, D. Bolten, U. Boettger, T. Schneller, and R. Waser, J. Appl. Phys. 92, 2680 (2002).

58 M. Grossmann, O. Lohse, D. Bolten, U. Boettger, and R. Waser, J. Appl. Phys. 92, 2688 (2002).

59 T.Y. Lee, K. Lee, H.H. Lim, M.S. Song, S.M. Yang, H.K. Yoo, D.I. Suh, Z. Zhu, A. Yoon, M.R. MacDonald, X. Lei, H.Y. Jeong, D. Lee, K. Park, J. Park, and S.C. Chae, ACS Appl. Mater. Interfaces 11, 3142 (2019).

60 P. Jiang, Q. Luo, X. Xu, T. Gong, P. Yuan, Y. Wang, Z. Gao, W. Wei, L. Tai, and H. Lv, Adv. Electron. Mater. 7, 2000728 (2021).

61 M.S. Song, T.Y. Lee, K. Lee, K.C. Lee, and S.C. Chae, Appl. Phys. Lett. 117, 162903 (2020).

62 M.C. Chun, S. Park, S. Park, G. Park, M.J. Kim, Y. Cho, and B.S. Kang, J. Alloys Compd. 823, 153777 (2020).

63 M. Pešić, F.P.G. Fengler, L. Larcher, A. Padovani, T. Schenk, E.D. Grimley, X. Sang, J.M. LeBeau, S. Slesazeck, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater. 26, 4601 (2016).

64 F.A. McGuire, Y.C. Lin, K. Price, G.B. Rayner, S. Khandelwal, S. Salahuddin, and A.D. Franklin, Nano Lett. 17, 4801 (2017).

65 M.H. Lee, Y.T. Wei, K.Y. Chu, J.J. Huang, C.W. Chen, C.C. Cheng, M.J. Chen, H.Y. Lee, Y.S. Chen, L.H. Lee, and M.J. Tsai, IEEE Electron Device Lett. 36, 294 (2015).

66 G.A. Salvatore, D. Bouvet, and A.M. Ionescu, in 2008 IEEE Int. Electron Devices Meet. (IEEE, 2008), pp. 1–4.

67 A. Rusu, G.A. Salvatore, D. Jimenez, and A.M. Ionescu, in 2010 Int. Electron Devices Meet. (IEEE, 2010), pp. 16.3.1-16.3.4.

68 M. Si, C. Jiang, C.-J. Su, Y.-T. Tang, L. Yang, W. Chung, M.A. Alam, and P.D. Ye, in 2017 IEEE Int. Electron Devices Meet. (IEEE, 2017), pp. 23.5.1-23.5.4.

69 C.-J. Su, T.-C. Hong, Y.-C. Tsou, F.-J. Hou, P.-J. Sung, M.-S. Yeh, C.-C. Wan, K.-H. Kao, Y.-T. Tang, C.-H. Chiu, C.-J. Wang, S.-T. Chung, T.-Y. You, Y.-C. Huang, C.-T. Wu, K.-L. Lin, G.-L. Luo, K.-P. Huang, Y.-J. Lee, T.-S. Chao, W.-F. Wu, G.-W. Huang, J.-M. Shieh, W.-K. Yeh, and Y.-H. Wang, in 2017 IEEE Int. Electron Devices Meet. (IEEE, 2017), pp. 15.4.1-15.4.4.

70 Z. Krivokapic, U. Rana, R. Galatage, A. Razavieh, A. Aziz, J. Liu, J. Shi, H.J. Kim, R. Sporer, C. Serrao, A. Busquet, P. Polakowski, J. Muller, W. Kleemeier, A. Jacob, D. Brown, A. Knorr, R. Carter, and S. Banna, in 2017 IEEE Int. Electron Devices Meet. (IEEE, 2017), pp. 15.1.1-15.1.4.

71 J. Li, J. Zhou, G. Han, Y. Liu, Y. Peng, J. Zhang, Q.Q. Sun, D.W. Zhang, and Y. Hao, IEEE Trans. Electron Devices 65, 1217 (2018).

72 M. Jerry, J.A. Smith, K. Ni, A. Saha, S. Gupta, and S. Datta, in 2018 76th Device Res. Conf. (IEEE, 2018), pp. 1–2.

73 M.H. Lee, P.-G. Chen, C. Liu, K.-Y. Chu, C.-C. Cheng, M.-J. Xie, S.-N. Liu, J.-W. Lee, S.-J. Huang, M.-H. Liao, M. Tang, K.-S. Li, and M.-C. Chen, in 2015 IEEE Int. Electron Devices Meet. (IEEE, 2015), pp. 22.5.1-22.5.4.

74 K.-S. Li, P.-G. Chen, T.-Y. Lai, C.-H. Lin, C.-C. Cheng, C.-C. Chen, Y.-J. Wei, Y.-F. Hou, M.-H. Liao, M.-H. Lee, M.-C. Chen, J.-M. Sheih, W.-K. Yeh, F.-L. Yang, S. Salahuddin, and C. Hu, in 2015 IEEE Int. Electron Devices Meet. (IEEE, 2015), pp. 22.6.1-22.6.4.

75 M. Kobayashi and T. Hiramoto, AIP Adv. 6, 025113 (2016).

76 S.-C. Chang, U.E. Avci, D.E. Nikonov, and I.A. Young, IEEE J. Explor. SolidState Comput. Devices Circuits 3, 56 (2017).

77 A.I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S.R. Bakaul, R. Ramesh, and S. Salahuddin, Nat Mater 14, 182 (2015).

78 S.-C. Chang, U.E. Avci, D.E. Nikonov, S. Manipatruni, and I.A. Young, Phys. Rev. Appl. 9, 014010 (2018).

79 S.J. Song, Y.J. Kim, M.H. Park, Y.H. Lee, H.J. Kim, T. Moon, K. Do Kim, J.-H. Choi, Z. Chen, A. Jiang, and C.S. Hwang, Sci. Rep. 6, 20825 (2016).

80 A.K. Saha, S. Datta, and S.K. Gupta, J. Appl. Phys. 123, 105102 (2018).

81 M. Hoffmann, M. Pešić, K. Chatterjee, A.I. Khan, S. Salahuddin, S. Slesazeck, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater. 26, 8643 (2016).

82 B. Obradovic, T. Rakshit, R. Hatcher, J.A. Kittl, and M.S. Rodder, in 2018 IEEE Symp. VLSI Technol. (IEEE, 2018), pp. 51–52.

83 A.M. Bratkovsky and A.P. Levanyuk, Appl. Phys. Lett. 89, 253108 (2006).

84 P. Sharma, J. Zhang, K. Ni, and S. Datta, IEEE Electron Device Lett. 39, 272 (2018).

Chapter2

1 G.A. Salvatore, D. Bouvet, and A.M. Ionescu, in 2008 IEEE Int. Electron Devices Meet. (IEEE, 2008), pp. 1–4.

2 A. Rusu, G.A. Salvatore, D. Jimenez, and A.M. Ionescu, in 2010 Int. Electron Devices Meet. (IEEE, 2010), pp. 16.3.1-16.3.4.

3 M. Si, C. Jiang, C.-J. Su, Y.-T. Tang, L. Yang, W. Chung, M.A. Alam, and P.D. Ye, in 2017 IEEE Int. Electron Devices Meet. (IEEE, 2017), pp. 23.5.1-23.5.4.

4 C.-J. Su, T.-C. Hong, Y.-C. Tsou, F.-J. Hou, P.-J. Sung, M.-S. Yeh, C.-C. Wan, K.- H. Kao, Y.-T. Tang, C.-H. Chiu, C.-J. Wang, S.-T. Chung, T.-Y. You, Y.-C. Huang, C.-T. Wu, K.-L. Lin, G.-L. Luo, K.-P. Huang, Y.-J. Lee, T.-S. Chao, W.-F. Wu, G.- W. Huang, J.-M. Shieh, W.-K. Yeh, and Y.-H. Wang, in 2017 IEEE Int. Electron Devices Meet. (IEEE, 2017), pp. 15.4.1-15.4.4.

5 Z. Krivokapic, U. Rana, R. Galatage, A. Razavieh, A. Aziz, J. Liu, J. Shi, H.J. Kim, R. Sporer, C. Serrao, A. Busquet, P. Polakowski, J. Muller, W. Kleemeier, A. Jacob, D. Brown, A. Knorr, R. Carter, and S. Banna, in 2017 IEEE Int. Electron Devices Meet. (IEEE, 2017), pp. 15.1.1-15.1.4.

6 J. Li, J. Zhou, G. Han, Y. Liu, Y. Peng, J. Zhang, Q.-Q. Sun, D.W. Zhang, and Y. Hao, IEEE Trans. Electron Devices 65, 1217 (2018).

7 M. Jerry, J.A. Smith, K. Ni, A. Saha, S. Gupta, and S. Datta, in 2018 76th Device Res. Conf. (IEEE, 2018), pp. 1–2.

8 M.H. Lee, P.-G. Chen, C. Liu, K.-Y. Chu, C.-C. Cheng, M.-J. Xie, S.-N. Liu, J.-W. Lee, S.-J. Huang, M.-H. Liao, M. Tang, K.-S. Li, and M.-C. Chen, in 2015 IEEE Int. Electron Devices Meet. (IEEE, 2015), pp. 22.5.1-22.5.4.

9 K.-S. Li, P.-G. Chen, T.-Y. Lai, C.-H. Lin, C.-C. Cheng, C.-C. Chen, Y.-J. Wei, Y.- F. Hou, M.-H. Liao, M.-H. Lee, M.-C. Chen, J.-M. Sheih, W.-K. Yeh, F.-L. Yang, S. Salahuddin, and C. Hu, in 2015 IEEE Int. Electron Devices Meet. (IEEE, 2015), pp. 22.6.1-22.6.4.

10 M.H. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, M.-H. Liao, C.-A. Jong, K.-S. Li, M.-C. Chen, and C.W. Liu, in 2016 IEEE Int. Electron Devices Meet. (IEEE, 2016), pp. 12.1.1-12.1.4.

11 J. Zhou, G. Han, Q. Li, Y. Peng, X. Lu, C. Zhang, J. Zhang, Q.-Q. Sun, D.W. Zhang, and Y. Hao, in 2016 IEEE Int. Electron Devices Meet. (IEEE, 2016), pp. 12.2.1-12.2.4.

12 A. Nourbakhsh, A. Zubair, S. Joglekar, M. Dresselhaus, and T. Palacios, Nanoscale 9, 6122 (2017).

13 M.H. Lee, P.-G. Chen, S.-T. Fan, Y.-C. Chou, C.-Y. Kuo, C.-H. Tang, H.-H. Chen, S.-S. Gu, R.-C. Hong, Z.-Y. Wang, S.-Y. Chen, C.-Y. Liao, K.-T. Chen, S.T. Chang, M.-H. Liao, K.-S. Li, and C.W. Liu, in 2017 IEEE Int. Electron Devices Meet. (IEEE, 2017), pp. 23.3.1-23.3.4.

14 C.-C. Fan, C.-H. Cheng, Y.-R. Chen, C. Liu, and C.-Y. Chang, in 2017 IEEE Int. Electron Devices Meet. (IEEE, 2017), pp. 23.2.1-23.2.4.

15 W. Chung, M. Si, and P.D. Ye, in 2017 IEEE Int. Electron Devices Meet. (IEEE, 2017), pp. 15.3.1-15.3.4.

16 S. Salahuddin and S. Datta, Nano Lett. 8, 405 (2008).

17 S.-C. Chang, U.E. Avci, D.E. Nikonov, and I.A. Young, IEEE J. Explor. SolidState Comput. Devices Circuits 3, 56 (2017).

18 P. Zubko, J.C. Wojdeł, M. Hadjimichael, S. Fernandez-Pena, A. Sené, I. Luk’yanchuk, J.-M. Triscone, and J. Íñiguez, Nature 534, 524 (2016).

19 M. Kobayashi and T. Hiramoto, AIP Adv. 6, 025113 (2016).

20 A.I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S.R. Bakaul, R. Ramesh, and S. Salahuddin, Nat. Mater. 14, 182 (2015).

21 S.-C. Chang, U.E. Avci, D.E. Nikonov, S. Manipatruni, and I.A. Young, Phys. Rev. Appl. 9, 014010 (2018).

22 S.J. Song, Y.J. Kim, M.H. Park, Y.H. Lee, H.J. Kim, T. Moon, K. Do Kim, J.-H. Choi, Z. Chen, A. Jiang, and C.S. Hwang, Sci. Rep. 6, 20825 (2016).

23 A.K. Saha, S. Datta, and S.K. Gupta, J. Appl. Phys. 123, 105102 (2018).

24 M. Hoffmann, M. Pešić, K. Chatterjee, A.I. Khan, S. Salahuddin, S. Slesazeck, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater. 26, 8643 (2016).

25 B. Obradovic, T. Rakshit, R. Hatcher, J.A. Kittl, and M.S. Rodder, in 2018 IEEE Symp. VLSI Technol. (IEEE, 2018), pp. 51–52.

26 A.M. Bratkovsky and A.P. Levanyuk, Appl. Phys. Lett. 89, 253108 (2006).

27 P. Sharma, J. Zhang, K. Ni, and S. Datta, IEEE Electron Device Lett. 39, 272 (2018).

28 F.A. McGuire, Y.C. Lin, K. Price, G.B. Rayner, S. Khandelwal, S. Salahuddin, and A.D. Franklin, Nano Lett. 17, 4801 (2017).

29 J. Zhou, Y. Zhou, Y. Hao, Y. Peng, G. Han, Q. Li, Y. Liu, J. Zhang, M. Liao, Q.- Q. Sun, and D.W. Zhang, IEEE J. Electron Devices Soc. 6, 41 (2018).

30 R. Kretschmer and K. Binder, Phys. Rev. B 20, 1065 (1979).

31 S. M. Sze, Physics of Semiconductor Devices, Third (Wiley, New York, 2007).

32 J. Müller, U. Schröder, T.S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey, J. Appl. Phys. 110, 114113 (2011).

33 U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M.I. Popovici, S. V. Kalinin, and T. Mikolajick, Jpn. J. Appl. Phys. 53, 08LE02 (2014).

34 S. Migita, H. Ota, H. Yamada, K. Shibuya, A. Sawa, and A. Toriumi, Jpn. J. Appl. Phys. 57, 04FB01 (2018).

35 J. Müller, T.S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, Appl. Phys. Lett. 99, 112901 (2011).

36 N. Fujimura and T. Yoshimura, Ferroelectric Thin Films: Basic Properties and Device Physics for Memory Applications Topics in Appl. Phys. 98 (Springer, eds. M. Okuyama and Y. Ishibashi), 199 (2005).

Chapter3

1 R. Materlik, C. Künneth, and A. Kersch, J. Appl. Phys. 117, 134109 (2015).

2 P. Polakowski and J. Müller, Appl. Phys. Lett. 106, 232905 (2015).

3 M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang, Appl. Phys. Lett. 102, 242905 (2013).

4 E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A.P. Graham, T. Melde, U. Schröder, and T. Mikolajick, Thin Solid Films 533, 88 (2013).

5 J. Müller, U. Schröder, T.S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey, J. Appl. Phys. 110, 114113 (2011).

6 T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Appl. Phys. Lett. 99, 102903 (2011).

7 M. Hyuk Park, H. Joon Kim, Y. Jin Kim, T. Moon, and C. Seong Hwang, Appl. Phys. Lett. 104, 072901 (2014).

8 T. Olsen, U. Schröder, S. Müller, A. Krause, D. Martin, A. Singh, J. Müller, M. Geidel, and T. Mikolajick, Appl. Phys. Lett. 101, 082905 (2012).

9 T. Nishimura, L. Xu, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi, Jpn. J. Appl. Phys. 55, 08PB01 (2016).

10 A. Pal, V.K. Narasimhan, S. Weeks, K. Littau, D. Pramanik, and T. Chiang, Appl. Phys. Lett. 110, 022903 (2017).

11 S. Migita, H. Ota, H. Yamada, K. Shibuya, A. Sawa, and A. Toriumi, Jpn. J. Appl. Phys. 57, 04FB01 (2018).

12 M. Toledano-Luque, E. San Andrés, J. Olea, A. del Prado, I. Mártil, W. Bohne, J. Röhrich, and E. Strub, Mater. Sci. Semicond. Process. 9, 1020 (2006).

13 S.J. Kim, D. Narayan, J.-G. Lee, J. Mohan, J.S. Lee, J. Lee, H.S. Kim, Y.-C. Byun, A.T. Lucero, C.D. Young, S.R. Summerfelt, T. San, L. Colombo, and J. Kim, Appl. Phys. Lett. 111, 242901 (2017).

14 M.G. KIM and S. OHMI, IEICE Trans. Electron. E102.C, 435 (2019).

15 L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi, J. Appl. Phys. 122, 124104 (2017).

16 X. Liu, L. Yao, Y. Cheng, B. Xiao, M. Liu, and W. Wang, Appl. Phys. Lett. 115, 152901 (2019).

17 T. Mittmann, M. Materano, P.D. Lomenzo, M.H. Park, I. Stolichnov, M. Cavalieri, C. Zhou, C. Chung, J.L. Jones, T. Szyjka, M. Müller, A. Kersch, T. Mikolajick, and U. Schroeder, Adv. Mater. Interfaces 1900042, 1900042 (2019).

18 M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K. Do Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C.S. Hwang, Adv. Mater. 27, 1811 (2015).

19 M.H. Park, T. Schenk, C.M. Fancher, E.D. Grimley, C. Zhou, C. Richter, J.M. Lebeau, J.L. Jones, T. Mikolajick, and U. Schroeder, J. Mater. Chem. C 5, 4677 (2017).

20 J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, Nano Lett. 12, 4318 (2012).

21 R. Materlik, C. Künneth, M. Falkowski, T. Mikolajick, and A. Kersch, J. Appl. Phys. 123, 164101 (2018).

22 S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater. 22, 2412 (2012).

23 S.-Y. Na, S.-J. Yoon, S.-Y. Kang, S.-E. Moon, and S.-M. Yoon, Jpn. J. Appl. Phys. 58, 070907 (2019).

24 S.-J. Yoon, S.-Y. Na, S.-E. Moon, and S.-M. Yoon, J. Vac. Sci. Technol. B 37, 050601 (2019).

25 J. Zhou, Z. Zhou, X. Wang, H. Wang, C. Sun, K. Han, Y. Kang, and X. Gong, IEEE Electron Device Lett. 41, 1130 (2020).

26 T.H. Ryu, S.J. Yoon, S.Y. Na, and S.M. Yoon, Curr. Appl. Phys. 19, 1383 (2019).

Chapter4

1 U. Schroeder, C. Richter, M.H. Park, T. Schenk, M. Pešić, M. Hoffmann, F.P.G. Fengler, D. Pohl, B. Rellinghaus, C. Zhou, C.-C. Chung, J.L. Jones, and T. Mikolajick, Inorg. Chem. 57, 2752 (2018).

2 J. Lyu, I. Fina, R. Solanas, J. Fontcuberta, and F. Sánchez, Appl. Phys. Lett. 113, 082902 (2018).

3 A.G. Chernikova, M.G. Kozodaev, D. V. Negrov, E. V. Korostylev, M.H. Park, U. Schroeder, C.S. Hwang, and A.M. Markeev, ACS Appl. Mater. Interfaces 10, 2701 (2018).

4 S. Mueller, J. Muller, U. Schroeder, and T. Mikolajick, IEEE Trans. Device Mater. Reliab. 13, 93 (2013).

5 S.S. Fields, S.W. Smith, P.J. Ryan, S.T. Jaszewski, I.A. Brummel, A. Salanova, G. Esteves, S.L. Wolfley, M.D. Henry, P.S. Davids, and J.F. Ihlefeld, ACS Appl. Mater. Interfaces 12, 26577 (2020).

6 Y.A. Genenko, J. Glaum, M.J. Hoffmann, and K. Albe, Mater. Sci. Eng. B 192, 52 (2015).

7 T. Lu, Y. Tian, A. Studer, Q. Li, R.L. Withers, L. Jin, D. Yu, Z. Xu, X. Wei, and Y. Liu, Chem. Mater. 32, 6456 (2020).

8 J.C. Choi, M.S. Song, K. Lee, K. Park, J. Park, H. Lee, J.H. Lee, and S.C. Chae, Curr. Appl. Phys. 20, 746 (2020).

9 A. Shekhawat, G. Walters, C.-C. Chung, R. Garcia, Y. Liu, J. Jones, T. Nishida, and S. Moghaddam, ECS J. Solid State Sci. Technol. 9, 024011 (2020).

10 P.D. Lomenzo, Q. Takmeel, C. Zhou, C.M. Fancher, E. Lambers, N.G. Rudawski, J.L. Jones, S. Moghaddam, and T. Nishida, J. Appl. Phys. 117, 134105 (2015).

11 A. Chouprik, M. Spiridonov, S. Zarubin, R. Kirtaev, V. Mikheev, Y. Lebedinskii, S. Zakharchenko, and D. Negrov, ACS Appl. Electron. Mater. 1, 275 (2019).

12 F.P.G. Fengler, M. Hoffmann, S. Slesazeck, T. Mikolajick, and U. Schroeder, J. Appl. Phys. 123, 204101 (2018).

13 P. Buragohain, A. Erickson, P. Kariuki, T. Mittmann, C. Richter, P.D. Lomenzo, H. Lu, T. Schenk, T. Mikolajick, U. Schroeder, and A. Gruverman, ACS Appl. Mater. Interfaces 11, 35115 (2019).

14 Y. Higashi, B. Kaczer, A.S. Verhulst, B.J. O’Sullivan, N. Ronchi, S.R.C. McMitchell, K. Banerjee, L. Di Piazza, M. Suzuki, D. Linten, and J. Van Houdt, IEEE Trans. Electron Devices 67, 4911 (2020).

15 C. Zacharaki, P. Tsipas, S. Chaitoglou, L. Bégon-Lours, M. Halter, and A. Dimoulas, Appl. Phys. Lett. 117, 212905 (2020).

16 M. Grossmann, O. Lohse, D. Bolten, U. Boettger, T. Schneller, and R. Waser, J. Appl. Phys. 92, 2680 (2002).

17 M. Grossmann, O. Lohse, D. Bolten, U. Boettger, and R. Waser, J. Appl. Phys. 92, 2688 (2002).

18 D. Zhou, J. Xu, Q. Li, Y. Guan, F. Cao, X. Dong, J. Müller, T. Schenk, and U. Schröder, Appl. Phys. Lett. 103, 192904 (2013).

19 T.Y. Lee, K. Lee, H.H. Lim, M.S. Song, S.M. Yang, H.K. Yoo, D.I. Suh, Z. Zhu, A. Yoon, M.R. MacDonald, X. Lei, H.Y. Jeong, D. Lee, K. Park, J. Park, and S.C. Chae, ACS Appl. Mater. Interfaces 11, 3142 (2019).

20 P. Jiang, Q. Luo, X. Xu, T. Gong, P. Yuan, Y. Wang, Z. Gao, W. Wei, L. Tai, and H. Lv, Adv. Electron. Mater. 7, 2000728 (2021).

21 J.F. Shepard, P.J. Moses, and S. Trolier-McKinstry, Sensors Actuators A Phys. 71, 133 (1998).

22 M.-A. Dubois and P. Muralt, Sensors Actuators A Phys. 77, 106 (1999).

23 B.B. Tian, Y. Liu, L.F. Chen, J.L. Wang, S. Sun, H. Shen, J.L. Sun, G.L. Yuan, S. Fusil, V. Garcia, B. Dkhil, X.J. Meng, and J.H. Chu, Sci. Rep. 5, 18297 (2016).

24 R.R. Mehta, B.D. Silverman, and J.T. Jacobs, J. Appl. Phys. 44, 3379 (1973).

25 M. Pešić, F.P.G. Fengler, L. Larcher, A. Padovani, T. Schenk, E.D. Grimley, X. Sang, J.M. LeBeau, S. Slesazeck, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater. 26, 4601 (2016).

26 E.D. Grimley, T. Schenk, X. Sang, M. Pešić, U. Schroeder, T. Mikolajick, and J.M. LeBeau, Adv. Electron. Mater. 2, 1600173 (2016).

27 M. Schumacher, S. Manetta, and R. Waser, Le J. Phys. IV 08, Pr9 (1998).

28 J.D. Baniecki, R.B. Laibowitz, T.M. Shaw, P.R. Duncombe, D.A. Neumayer, D.E. Kotecki, H. Shen, and Q.Y. Ma, Appl. Phys. Lett. 72, 498 (1998).

29 Y. González-Abreu, L.C. Suárez-González, A. Peláiz-Barranco, and J.D.S. Guerra, J. Alloys Compd. 747, 38 (2018).

30 A.K. Jonscher, J. Phys. D. Appl. Phys. 32, R57 (1999).

31 P. Pissis and A. Kyritsis, Solid State Ionics 97, 105 (1997).

32 T.C. Guo and W.W. Guo, J. Phys. C Solid State Phys. 16, 1955 (1983).

33 A.I. Kingon, S.K. Streiffer, C. Basceri, and S.R. Summerfelt, MRS Bull. 21, 46 (1996).

34 B. Ma, D.-K. Kwon, M. Narayanan, and U. (Balu) Balachandran, J. Phys. D. Appl. Phys. 41, 205003 (2008).

35 I. Stolichnov and A. Tagantsev, J. Appl. Phys. 84, 3216 (1998).

36 X. Hao, Y. Wang, J. Yang, S. An, and J. Xu, J. Appl. Phys. 112, 114111 (2012).

Chapter5

1 M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K. Do Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C.S. Hwang, Adv. Mater. 27, 1811 (2015).

2 E.H. Kisi, J. Am. Ceram. Soc. 81, 741 (1998).

3 X. Liu, L. Yao, Y. Cheng, B. Xiao, M. Liu, and W. Wang, Appl. Phys. Lett. 115, 152901 (2019).

4 S.J. Kim, D. Narayan, J.-G. Lee, J. Mohan, J.S. Lee, J. Lee, H.S. Kim, Y.-C. Byun, A.T. Lucero, C.D. Young, S.R. Summerfelt, T. San, L. Colombo, and J. Kim, Appl. Phys. Lett. 111, 242901 (2017).

5 H. Mulaosmanovic, E.T. Breyer, T. Mikolajick, and S. Slesazeck, IEEE Electron Device Lett. 40, 216 (2019).

6 C.H. Cheng and A. Chin, IEEE Electron Device Lett. 35, 274 (2014).

7 M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, in 2017 IEEE Int. Electron Devices Meet. (IEEE, 2017), pp. 6.2.1-6.2.4.

8 T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, M. Czernohorsky, K. Kühnel, X. Thrun, N. Hanisch, P. Steinke, J. Calvo, and J. Müller, Appl. Phys. Lett. 112, 222903 (2018).

9 K.-Y. Chen, Y.-S. Tsai, and Y.-H. Wu, IEEE Electron Device Lett. 40, 1370 (2019).

10 P. Wang, Z. Wang, W. Shim, J. Hur, S. Datta, A.I. Khan, and S. Yu, IEEE Trans. Electron Devices 67, 955 (2020).

11 R. Ichihara, K. Suzuki, H. Kusai, K. Ariyoshi, K. Akari, K. Takano, K. Matsuo, Y. Kamiya, K. Takahashi, H. Miyazawa, Y. Kamimuta, K. Sakuma, and M. Saitoh, in 2020 IEEE Symp. VLSI Technol. (IEEE, 2020), pp. 1–2.

12 S. Mueller, J. Muller, R. Hoffmann, E. Yurchuk, T. Schlosser, R. Boschke, J. Paul, M. Goldbach, T. Herrmann, A. Zaka, U. Schroder, and T. Mikolajick, IEEE Trans. Electron Devices 60, 4199 (2013).

13 U. Schroeder, S. Mueller, J. Mueller, E. Yurchuk, D. Martin, C. Adelmann, T. Schloesser, R. van Bentum, and T. Mikolajick, ECS J. Solid State Sci. Technol. 2, N69 (2013).

14 E. Yurchuk, J. Müller, S. Müller, J. Paul, M. Peši, R. Van Bentum, U. Schroeder, T. Mikolajick, S. Member, and A. Ferroelectric, 63, 3501 (2016).

15 H. Mulaosmanovic, J. Ocker, S. Müller, U. Schroeder, J. Müller, P. Polakowski, S. Flachowsky, R. van Bentum, T. Mikolajick, and S. Slesazeck, ACS Appl. Mater. Interfaces 9, 3792 (2017).

16 Y.-C. Chiu, C.-H. Cheng, C.-Y. Chang, Y.-T. Tang, and M.-C. Chen, Phys. Status Solidi - Rapid Res. Lett. 11, 1600368 (2017).

17 B. Zeng, W. Xiao, J. Liao, H. Liu, M. Liao, Q. Peng, S. Zheng, and Y. Zhou, IEEE Electron Device Lett. 39, 1508 (2018).

18 K. Ni, X. Li, J.A. Smith, M. Jerry, and S. Datta, IEEE Electron Device Lett. 39, 1656 (2018).

19 T. Ali, P. Polakowski, S. Riedel, T. Buttner, T. Kampfe, M. Rudolph, B. Patzold, K. Seidel, D. Lohr, R. Hoffmann, M. Czernohorsky, K. Kuhnel, P. Steinke, J. Calvo, K. Zimmermann, and J. Muller, IEEE Trans. Electron Devices 65, 3769 (2018).

20 J.Y. Dai, P.F. Lee, K.H. Wong, H.L.W. Chan, and C.L. Choy, J. Appl. Phys. 94, 912 (2003).

21 X. Zhang, H. Tu, F. Wei, L. Wang, and J. Du, J. Cryst. Growth 312, 41 (2009).

22 S. Migita and H. Ota, ECS Trans. 41, 135 (2019).

23 N. Wakiya, T. Yamada, K. Shinozaki, and N. Mizutani, Thin Solid Films 371, 211 (2000).

24 N. Miyata, M. Ichikawa, T. Nabatame, T. Horikawa, and A. Toriumi, Jpn. J. Appl. Phys. 42, L138 (2003).

25 N. Miyata, T. Nabatame, T. Horikawa, M. Ichikawa, and A. Toriumi, Appl. Phys. Lett. 82, 3880 (2003).

26 N. Miyata, T. Yasuda, and Y. Abe, J. Appl. Phys. 107, 103536 (2010).

27 K. Muraoka, Appl. Phys. Lett. 80, 4516 (2002).

28 T. Shimizu, K. Katayama, T. Kiguchi, A. Akama, T.J. Konno, and H. Funakubo, Appl. Phys. Lett. 107, 032910 (2015).

参考文献をもっと見る