リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex

Nagao, Ryo Kato, Koji Kumazawa, Minoru Ifuku, Kentaro Yokono, Makio Suzuki, Takehiro Dohmae, Naoshi Akita, Fusamichi Akimoto, Seiji Miyazaki, Naoyuki Shen, Jian-Ren 京都大学 DOI:10.1038/s41467-022-29294-5

2022

概要

Fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs) function as light harvesters in diatoms. The structure of a diatom photosystem II-FCPII (PSII-FCPII) supercomplex have been solved by cryo-electron microscopy (cryo-EM) previously; however, the FCPII subunits that constitute the FCPII tetramers and monomers are not identified individually due to their low resolutions. Here, we report a 2.5 Å resolution structure of the PSII-FCPII supercomplex using cryo-EM. Two types of tetrameric FCPs, S-tetramer, and M-tetramer, are identified as different types of hetero-tetrameric complexes. In addition, three FCP monomers, m1, m2, and m3, are assigned to different gene products of FCP. The present structure also identifies the positions of most Chls c and diadinoxanthins, which form a complicated pigment network. Excitation-energy transfer from FCPII to PSII is revealed by time-resolved fluorescence spectroscopy. These structural and spectroscopic findings provide insights into an assembly model of FCPII and its excitation-energy transfer and quenching processes.

この論文で使われている画像

参考文献

1. Blankenship, R. E. Molecular Mechanisms of Photosynthesis 3rd edn (Wiley- Blackwell, 2021).

2. Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton.

Science 305, 354–360 (2004).

3. Wei, X. et al. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature 534, 69–74 (2016).

4. Su, X. et al. Structure and assembly mechanism of plant C2S2M2-type PSII- LHCII supercomplex. Science 357, 815–820 (2017).

5. Shen, L. et al. Structure of a C2S2M2N2-type PSII-LHCII supercomplex from the green alga Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 116, 21246–21255 (2019).

6. Sheng, X. et al. Structural insight into light harvesting for photosystem II in green algae. Nat. Plants 5, 1320–1330 (2019).

7. Nagao, R. et al. Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII supercomplex. Nat. Plants 5, 890–901 (2019).

8. Pi, X. et al. The pigment-protein network of a diatom photosystem II-light- harvesting antenna supercomplex. Science 365, eaax4406 (2019).

9. Cao, P. et al. Structure, assembly and energy transfer of plant photosystem II supercomplex. Biochim. Biophys. Acta, Bioenerg. 1859, 633–644 (2018).

10. Wang, W. et al. Structural features of the diatom photosystemII–light- harvesting antenna complex. FEBS J. 287, 2191–2200 (2020).

11. Kumazawa, M. et al. Molecular phylogeny of fucoxanthin-chlorophyll a/c proteins from Chaetoceros gracilis and Lhcq/Lhcf diversity. Physiol. Plant. 174, e13598 (2022).

12. Nagao, R. et al. Isolation and characterization of oxygen-evolving thylakoid membranes and Photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim. Biophys. Acta, Bioenerg. 1767, 1353–1362 (2007).

13. Okumura, A. et al. A novel protein in Photosystem II of a diatom Chaetoceros gracilis is one of the extrinsic proteins located on lumenal side and directly associates with PSII core components. Biochim. Biophys. Acta, Bioenerg. 1777, 1545–1551 (2008).

14. Nagao, R. et al. Purification and characterization of a stable oxygen-evolving photosystem II complex from a marine centric diatom, Chaetoceros gracilis. Biochim. Biophys. Acta, Bioenerg. 1797, 160–166 (2010).

15. Nagao, R. et al. Crystal structure of Psb31, a novel extrinsic protein of photosystem II from a marine centric diatom and implications for its binding and function. Biochemistry 52, 6646–6652 (2013).

16. Nagao, R. et al. Binding and functional properties of five extrinsic proteins in oxygen-evolving photosystem II from a marine centric diatom, Chaetoceros gracilis. J. Biol. Chem. 285, 29191–29199 (2010).

17. Nagao, R. et al. Electrostatic interaction of positive charges on the surface of Psb31 with photosystem II in the diatom Chaetoceros gracilis. Biochim. Biophys. Acta, Bioenerg. 1858, 779–785 (2017).

18. Nagao, R., Suzuki, T., Dohmae, N., Shen, J.-R. & Tomo, T. Functional role of Lys residues of Psb31 in electrostatic interactions with diatom photosystem II. FEBS Lett. 591, 3259–3264 (2017).

19. Wang, W. et al. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science 363, eaav0365 (2019).

20. Mimuro, M. et al. Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim. Biophys. Acta, Bioenerg. 1767, 327–334 (2007).

21. Nagao, R., Yokono, M., Tomo, T. & Akimoto, S. Control mechanism of excitation energy transfer in a complex consisting of photosystem II and fucoxanthin chlorophyll a/c-binding protein. J. Phys. Chem. Lett. 5, 2983–2987 (2014).

22. van Grondelle, R., Dekker, J. P., Gillbro, T. & Sundstrom, V. Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta, Bioenerg. 1187, 1–65 (1994).

23. Connolly, J. S., Janzen, A. F. & Samuel, E. B. Fluorescence lifetimes of chlorophyll a: Solvent, concentration, and oxygen dependence. Photochem. Photobiol. 36, 559–563 (1982).

24. Akimoto, S. et al. Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence. Biochim. Biophys. Acta, Bioenerg. 1837, 1514–1521 (2014).

25. Nagao, R. et al. Proteases are associated with a minor fucoxanthin chlorophyll a/c-binding protein from the diatom, Chaetoceros gracilis. Biochim. Biophys. Acta, Bioenerg. 1817, 2110–2117 (2012).

26. Nagao, R., Yokono, M., Teshigahara, A., Akimoto, S. & Tomo, T. Light- harvesting ability of the fucoxanthin chlorophyll a/c-binding protein associated with photosystem II from the diatom Chaetoceros gracilis as revealed by picosecond time-resolved fluorescence spectroscopy. J. Phys. Chem. B 118, 5093–5100 (2014).

27. Nagao, R. et al. Biochemical characterization of photosystem I complexes having different subunit compositions of fucoxanthin chlorophyll a/c-binding proteins in the diatom Chaetoceros gracilis. Photosynth. Res. 140, 141–149 (2019).

28. Nagao, R., Ueno, Y., Akimoto, S. & Shen, J.-R. Effects of CO2 and temperature on photosynthetic performance in the diatom Chaetoceros gracilis. Photosynth. Res. 146, 189–195 (2020).

29. Hamada, F., Murakami, A. & Akimoto, S. Adaptation of divinyl chlorophyll a/b-containing cyanobacterium to different light conditions: Three strains of Prochlorococcus marinus. J. Phys. Chem. B 121, 9081–9090 (2017).

30. Connelly, J. P. et al. Ultrafast spectroscopy of trimeric light-harvesting complex II from higher plants. J. Phys. Chem. B 101, 1902–1909 (1997).

31. Nagao, R., Yokono, M., Ueno, Y., Shen, J.-R. & Akimoto, S. Excitation-energy transfer and quenching in diatom PSI-FCPI upon P700 cation formation. J. Phys. Chem. B 124, 1481–1486 (2020).

32. Yokono, M., Akimoto, S., Koyama, K., Tsuchiya, T. & Mimuro, M. Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Biochim. Biophys. Acta, Bioenerg. 1777, 55–65 (2008).

33. Yokono, M., Akimoto, S. & Tanaka, A. Seasonal changes of excitation energy transfer and thylakoid stacking in the evergreen tree Taxus cuspidata: How does it divert excess energy from photosynthetic reaction center? Biochim. Biophys. Acta, Bioenerg. 1777, 379–387 (2008).

34. Akimoto, S. et al. Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim. Biophys. Acta, Bioenerg. 1817, 1483–1489 (2012).

35. Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

36. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

37. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

38. Grigorieff, N. & Harrison, S. C. Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Curr. Opin. Struc. Biol. 21, 265–273 (2011).

39. Pettersen, E. F. et al. UCSF chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

40. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

41. Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

42. Chen, V. B. et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

43. Barad, B. A. et al. EMRinger: Side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015).

44. Pintilie, G. et al. Measurement of atom resolvability in cryo-EM maps with Q- scores. Nat. Methods 17, 328–334 (2020).

45. The PyMOL Molecular Graphics System version 1.8 (Schrödinger, LLC, 2015).

参考文献をもっと見る