リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electrochemical preparation of nanostructures of Sm, Co, and Sm-Co alloy in an amide-type ionic liquid (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electrochemical preparation of nanostructures of Sm, Co, and Sm-Co alloy in an amide-type ionic liquid (本文)

Manjum, Marjanul 慶應義塾大学

2020.09.21

概要

Samarium (Sm), cobalt (Co), and their alloy (Sm-Co) nanoparticles can be considered as important constituents for magnetic materials due to the excellent magneto-crystalline anisotropy. In recent years, an amide-type ionic liquid composed of 1-butyl-1- methylpyrrolidinium (BMP+) and bis(trifluromethylsulfonyl)amide (TFSA⁻) has been considered as a promising electrolyte for the electrochemical preparation of various metal nanoparticles. However, the electrochemical preparation of Sm and its alloy nanoparticles and electrodeposition of transition metals under an external magnetic field in the ionic liquid have not been explored in depth yet. In this study, attempts have been made to understand the electrochemical formation of Sm and Sm-Co nanoparticles from their metal species in BMPTFSA. Furthermore, the electrodeposition of Co nanowire has been investigated under an external magnetic field.

In Chapter 1, a brief description of metal and magnetic nanoparticles, their electrochemical preparation in ionic liquids, and electrodeposition of metals with an external magnetic field.

Chapter 2 presents the general experimental techniques used in the present study.

Chapter 3 describes the electrochemical behavior of Sm species in BMPTFSA at various temperatures. Sm(III) was suggested to be reduced to Sm(II) at room temperature. At a high temperature, the disproportionation of Sm(II) was expected to occur to form Sm nanoparticles in BMPTFSA. Sm nanoparticles were considered to be prepared by the proportionation and disproportionation equilibrium among Sm, Sm(II), and Sm(III) in BMPTFSA at high temperature.

In chapter 4, the electrochemical formation of Sm-Co nanoparticles in the ionic liquid is explained. Electrochemically generated Sm(II) was found to be unstable in the presence of Co(II). Sm-Co nanoparticles dispersed in BMPTFSA were formed by the multi-step reactions of Sm(II), Co(II), and Co. Co(II) was expected to be reduced to Co in the electrolyte by Sm(II). An external magnetic field was applied to obtain a significant amount of the deposits on the electrode surface. The effect of the magnetic field on the current density and the morphology of the deposits was observed.

Chapter 5 deals with the electrodeposition of Co under an external magnetic field in BMPTFSA. A magnetic field application showed significant influences on the current density and the morphology of the deposits during the potentiostatic cathodic reduction. The direction of the magnetic field and the concentration of Co(II) were varied to understand their effect on the electrodeposition of Co.

Chapter 6 is concerned with the summary and the perspectives of this work.

この論文で使われている画像

参考文献

1. M. Samykano, R. Mohan, and S. Aravamudhan, Springer, 8, 75 (2015).

2. T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, Science, 261, 1316 (1993).

3. D. Saini, R. P. Chauhan, and S. J. Kumar, Mater. Sci.: Mater. Electron., 25, 124 (2013).

4. N. Liakakos, T. Blon, C. Achkar, V. Vilar, B. Cormary, R. P. Tan, O. Benamara, G. Chaboussant, F. Ott, B. Warot-Fonrose, E. Snoeck, B. Chaudret, K. Soulantica, and M. Respaud, Nano Lett., 14, 3481 (2014).

5. R. Wan, Y. Mo, Z. Zhang, M. Jiang, S. Tang, and Q. Zhang, Part. Fibre Toxicol., 14, 38 (2017).

6. M. P. Raphael, J. A. Christodoulides, S. N. Qadri, B. S. Simpkins, and J. M. Byers, Nanotechnol., 21, 285101 (2010).

7. W. Gao and J. Wang, Nanoscale, 6, 10486 (2014).

8. S. Yagi, M. Kawamori, and E. Matsubara, Electrochem. Solid. State Lett., 13, E13 (2010).

9. G. Zhang, T. Zhang, X. Lu, W. Wang, J. Qu, and X. Li, J. Phys. Chem., 111, 12663 (2007).

10. J. M. Daughton, Thin Solid Films, 216, 162 (1992).

11. M. Gavagnin, H. D. Wanzenboeck, D. Belic, and E. Bertagnolli, ACS Nano, 7, 777 (2013).

12. M. Gabureac, L. Bernau, I. Utke, and G. Boero, Nanotechnol., 21, 115503 (2010).

13. B.-Y. Xie, Y. Qian, S. Zhang, S. Fu, and W. Yu, Eur. J. Inorg. Chem., 12, 2454 (2006).

14. D. J. Sellmyer, H. Zeng, M. Yan, S. Sun, and Y. Liu, Handbook of Advanced Magnetic Materials (Springer, USA) (2006).

15. D. J. Sellmyer, M. Zheng, and R. Skomski, J. Phys.: Condens. Matter, 13, R433 (2001).

16. S. Z. Chu, S. Inoue, K. Wada, and K. Kurashima, Electrochim. Acta, 51, 820 (2005).

17. L. A. Bauer, N. S. Birenbaum, and G. J. Meyer, J. Mater. Chem., 14, 517 (2004).

18. M. Hernández-Vélez, Thin Solid Films, 495, 51 (2006).

19. P. D. McGary, L. Tan, J. Zou, and B. J. H. Stadler, J. Appl. Phys., 99, 308B310 (2006).

20. M. Yun, N. V. Myung, R. P. Vasquez, J. Wang, and H. Monbouquette, Proc. SPIE, 5220, 37 (2003).

21. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, Science, 294, 1313 (2001).

22. G. Viau, C. Garcia, T. Maurer, G. Chaboussant, F. Ott, Y. Soumare, and J.-Y. Piquemal, Phys. Status Solidi. A, 206, 6636 (2009).

23. M. T. Wu, I. C. Leu, J. H. Yen, and M. H. Hon, Electrochem. Solid State Lett., 7, C61 (2004).

24. R. M. Metzger, V. V. Konovalov, M. Sun, T. Xu, G. Zangari, B. Xu, M. Benakli, and W. D. Doyle, IEEE Trans. Magn., 36, 30 (2000).

25. T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, Science, 290, 2126 (2000).

26. J. C. Hulteen and C. R. Martin, J. Mater. Chem., 7, 1075 (1997).

27. V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, Science, 291, 2115 (2001).

28. I. I. Naumov, L. Bellaiche, and H. X. Fu, Nature, 432, 737 (2004).

29. G. F. Zou, K. Xiong, C. L. Jiang, H. Li, Y. Wang, S. Y. Zhang, and Y. T. Qian, Nanotechnol., 16, 1584 (2005).

30. D. W. Xu, E. Graugnard, J. S. King, L. W. Zhong, and C. J. Summers, Nano Lett., 4, 2223 (2004).

31. Q. Xie, Z. Dai, W. W. Huang, J. B. Liang, C. L. Jiang, and Y. T. Qian, Nanotechnol., 16, 2958 (2005).

32. M. Vazquez (ed.), Magnetic Nano-and Microwires-Design, Synthesis, Properties and Applications (Woodhead, Cambridge) (2015).

33. P. Cojocaru, L. Magagnin, E. Gomez, and E. Valles, J. Alloys Comp., 503, 454 (2010).

34. P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, and C. J. Serna, J. Phys D: Appl. Phys., 36, R182 (2003).

35. R. E. Cable and R. E. Schaak, Chem. Mater., 17, 6835 (2005).

36. G. Viau, F. Fiévet-Vincent, and F. Fiévet, Solid State Ionics, 84, 259 (1996).

37. G. Schmid (ed.), Nanoparticles from Theory to Applications (Wiley-VCH Verlag GmbH CO. KGaA, Weinheim) (2004).

38. G. Viau, C. Garcia, T. Maurer, G. Chaboussant, F. Ott, Y. Soumare, and J.-Y. Piquemal, Phys. Status Solidi. A, 206, 663 (2009).

39. I. Utke, S. Moshkalev, P. Russell, Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford University Press, New York) (2012).

40. M. Aslam, R. Bhobe, N. Alem, S. Donthu, and V. P. Dravid, J. Appl. Phys., 98, 074311 (2005).

41. E. K. Athanassiou, P. Grossman, R. N. Grass, and W. J. Stark, Nanotechnol., 18, 165606 (2007).

42. Y. Soumare, J.-Y. Piquemal, T. Maurer, F. Ott, G. Chaboussan, A. Falqui, and G. Viau, J. Mater. Chem., 18, 5696 (2008).

43. S. I. Cha, C. B. Mo, K. T. Kim, and S. H. Hong, J. Mater. Res., 20, 2148 (2005).

44. Y. Li, J. Zhao, Y. Zhu, D. Ma, Y. Zhao, S. Hou, and F. Yan, Colloids Surf., A, 356, 156 (2010).

45. K. Hoshino and Y. Hitsuoka, Electrochem. Comm., 7, 821 (2005).

46. N. B. Chaure, P. Stamenov, F. M. F. Rhen, and J. M. D. Coey, J. Magn. Magn. Mater., 290, 1210, (2005).

47. X. Yuan, C. Du, G. Sun, and N. Pan, Appl. Surf. Sci., 253, 4546 (2007).

48. L. Vila, P. Vincent, L. Dauginet-De Pra, G. Pino, E. Minoux, L. Gangloff, S. Demoustier- Champagne, N. Sarazin, E. Ferain, and R. Legras, Nano Lett., 4, 521 (2004).

49. A. K. M. Bantu, J. Rivas, G. Zaragoza, M. A. Lopez-Quintela, and M. C. Blanco, J. Appl. Phys., 89, 3393 (2001).

50. M. Li, K. Xie, Y. Wu, Q. Yang, and L. Liao, Mater. Lett., 111, 185 (2013).

51. Y. Xiong, Q. Chen, N. Tao, J. Ye, Y. Tang, J. Feng, and X. Gu, Nanotechnol. 18, 345301 (2007).

52. X. Li, H. Wang, K. Xie, Q. Long, X. Lai, and L. Liao, Beilstein J. Nanotechnol., 6, 2123 (2015).

53. H. Wang, X. Li, M. Li, K. Xie, and L. Liao, Bull. Mater. Sci., 38, 1285 (2015).

54. H. Wang, X. Li, M. Li, K. Xie, and L. Liao, Beilstein J. Nanotechnol., 6, 1268 (2015).

55. J. Wang, M. Yao, C. Xu, Y. Zhu, and P. Cui, Mater. Lett., 62, 3431 (2008).

56. C. Gong, J. Tian, Z. Wu, and Z. Zhang, Mater. Res. Bull., 44, 35 (2009).

57. C. Gong, L. Yu, Y. Duan, J. Tian, Z. Wu, and Z. Zhang, Eur. J. Inorg. Chem., 18, 2884 (2008).

58. X. Li, L. Sun, H. Wang, K. Xie, Q. Long, X. Lai, and L. Liao, Beilstein J. Nanotechnol., 7, 990 (2016).

59. T. R. Mhiochain, G. Hinds, A. Martin, E. Chang, A. Lai, L. Costiner, and J. M. D. Coey, Electrochim. Acta, 49, 4813 (2004).

60. I. Mogi and M. Kamiko, J. Cryst. Growth, 166, 276 (1996).

61. H. L. Niu, Q. W. Chen, H. F. Zhu, Y. S. Lin, and X. Zhang, J. Mater. Chem., 13, 1803 (2003).

62. S. H. Huh, A. Nakajima, and K. Kaya, J. Appl. Phys., 95, 2732 (2004).

63. A. Huczko, Appl. Phys. A, 70, 365 (2000).

64. M. D. L. Balela, S. yagi, and E. Matsubara, Electrochem. Solid-State Lett., 14, D68 (2011).

65. A. Krause, M. Uhlemann, A. Gebert, and L. Schultz, Electrochim. Acta, 49, 4127 (2004).

66. H. Matsushima, A. Ispas, A. Bund, W. Plieth, and Y. Fukunaka, J. Solid State Electrochem., 11, 737 (2007).

67. V. Ganesh, D. Vijayaraghavan, and V. Lakshminarayanan, Appl. Surf. Sci., 240, 286 (2005).

68. H. Matsushima, T. Nohira, I. Mogi, and Y. Ito, Surf. Coat. Technol., 179, 245 (2004).

69. H. R. Khan and K. Petrikowski, Mater. Sci. Forum., 373, 725 (2001).

70. Y. Yu, Z. Song, H. Ge, G. Wei, and L. Jiang, Int. J. Electrochem. Sci., 10, 4812 (2015).

71. A. Bund, A. Ispas, and G. Mutschke, Sci. Technol. Adv. Mater., 9, 024208 (2008).

72. G. Sharma, A. Kumar, S. Sharma, M. Naushad, R. P. Dwivedi, Z. A. ALOthman, and G. T. Mola, J. King Saud Univ., Sci., 31, 257 (2019).

73. R. Aogaki, K. Fueki, and T. Mukaibo, Denki Kagaku, 43, 504 (1975).

74. K. Kołodziejczyk, E. Miękoś, M. Zieliński, M. Jaksender, D. Szczukocki, K. Czarny, and B. Krawczyk, J. Solid State Electrochem., 22, 1629 (2018).

75. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science, 320, 190 (2008).

76. S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, New York) 2nd ed. (1997).

77. S. Valizadeh, J. M. George, P. Leisner, and L. Hultman, Electrochim. Acta, 47, 865 (2001).

78. J. Koza, M. Uhlemann, A. Gebert, and L. Schultz, J. Solid State Electrochem., 12,181 (2008).

79. R. Fukui, Y. Katayama, and T. Miura, Electrochemistry, 73, 567 (2005).

80. Y. Katayama, R. Fukui, and T. Miura, J. Electrochem. Soc., 154, D534 (2007).

81. R. Fukui, Y. Katayama, and T. Miura, Electrochim. Acta, 56, 1190 (2011).

82. Y. Katayama, R. Fukui, and T. Miura, Electrochemistry, 81, 532 (2013).

83. P.-X Yang, M.-Z An, C.-N Su, and F.-P. Wang, Electrochim. Acta, 54 763 (2008).

84. P.-X Yang, M.-Z An, C.-N Su, and F.-P. Wang, Chin. J. Inorg. Chem., 23, 1501 (2007).

85. Y.-T. Hsieh, M.-C. Lai, H.-L. Huang, I.-W. Sun, Electrochim. Acta, 117, 217 (2014).

86. M. Manjum, N. Serizawa, A. Ispas, A. Bund, and Y. Katayama, J. Electrochem. Soc., 167, 042505 (2020).

87. W. Low, Phys. Rev., 109, 256 (1958).

88. X.-T. Wang, B.-W. Wang, Z.-M Wang, W. Zhang, and S. Gao, Inorg. Chim. Acta, 361, 3895 (2008).

89. S. L. Castro, Z. Sun, C. M. Grant, J. C. Bollinger, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 120, 2365 (1998).

90. C. Rajnak, F. Varga, J. Titis, J. Moncol, and R. Boca, Inorg. Chem., 57, 4352 (2018).

91. J. Vallejo, I. Castro, R. Ruiz-Garcia, J. Cano, M. Julve, F. Lloret, G. D. Munno, W. Wernsdorfer, and E. Pardo, J. Am. Chem. Soc., 134, 15704, (2012).

92. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, Appl. Surf. Sci., 257, 2717 (2011).

93. C. C. Naik and A. V. Salker, Mater. Res. Express, 6, 066112 (2019).

94. S. Men, K. R. J. Lovelock, and P. Licence, Phys. Chem. Chem. Phys., 13, 15244 (2011).

95. A. I. Shiave, R. Mohan, and M. Samykano, Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition, 12, V012T10A061 (2019).

96. M. Samykano, R. Mohan, and S. Aravamudhan, J. Nanotechnol. Eng. Med., 5, 021005 (2014).

97. R. Aogaki, K. Fueki, and T. Mukaibo, Denki Kagaku, 43, 504 (1975).

参考文献をもっと見る