リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Beta-1,4-galactosyltransferase-3 deficiency suppresses the growth of immunogenic tumors in mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Beta-1,4-galactosyltransferase-3 deficiency suppresses the growth of immunogenic tumors in mice

Wei, Heng Naruse, Chie Takakura, Daisuke Sugihara, Kazushi Pan, Xuchi Ikeda, Aki Kawasaki, Nana Asano, Masahide 京都大学 DOI:10.3389/fimmu.2023.1272537

2023.10.09

概要

Background: Beta-1, 4-galactosyltransferase-3 (B4GALT3) belongs to the family of beta-1, 4-galactosyltransferases (B4GALTs) and is responsible for the transfer of UDP-galactose to terminal N-acetylglucosamine. B4GALT3 is differentially expressed in tumors and adjacent normal tissues, and is correlated with clinical prognosis in several cancers, including neuroblastoma, cervical cancer, and bladder cancer. However, the exact role of B4GALT3 in the tumor immune microenvironment (TIME) remains unclear. Here, we aimed to elucidate the function of B4GALT3 in the TIME. Methods: To study the functions of B4GALT3 in cancer immunity, either weakly or strongly immunogenic tumor cells were subcutaneously transplanted into wild-type (WT) and B4galt3 knockout (KO) mice. Bone marrow transplantation and CD8+ T cell depletion experiments were conducted to elucidate the role of immune cells in suppressing tumor growth in B4galt3 KO mice. The cell types and gene expression in the tumor region and infiltrating CD8+ T cells were analyzed using flow cytometry and RNA sequencing. N-glycosylated proteins from WT and B4galt3 KO mice were compared using the liquid chromatography tandem mass spectrometry (LC-MS/MS)-based glycoproteomic approach. Results: B4galt3 KO mice exhibited suppressed growth of strongly immunogenic tumors with a notable increase in CD8+ T cell infiltration within tumors. Notably, B4galt3 deficiency led to changes in N-glycan modification of several proteins, including integrin alpha L (ITGAL), involved in T cell activity and proliferation. In vitro experiments suggested that B4galt3 KO CD8+ T cells were more susceptible to activation and displayed increased downstream phosphorylation of FAK linked to ITGAL. Conclusion: Our study demonstrates that B4galt3 deficiency can potentially boost anti-tumor immune responses, largely through enhancing the influx of CD8+ T cells. B4GALT3 might be suppressing cancer immunity by synthesizing the glycan structure of molecules on the CD8+ T cell surface, as evidenced by the changes in the glycan structure of ITGAL in immune cells. Importantly, B4galt3 KO mice showed no adverse effects on growth, development, or reproduction, underscoring the potential of B4GALT3 as a promising and safe therapeutic target for cancer treatment.

この論文で使われている画像

参考文献

1. Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation,

as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta BBA Gen Subj (1999) 1473:4–8. doi: 10.1016/S0304-4165(99)00165-8

23. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in

athymic (nude) mice. Cancer Chemother Pharmacol (1989) 24:148–54. doi: 10.1007/

BF00300234

2. An HJ, Froehlich JW, Lebrilla CB. Determination of glycosylation sites and sitespecific heterogeneity in glycoproteins. Curr Opin Chem Biol (2009) 13:421–6.

doi: 10.1016/j.cbpa.2009.07.022

24. Euhus DM, Hudd C, Laregina MC, Johnson FE. Tumor measurement in the

nude mouse. J Surg Oncol (1986) 31:229–34. doi: 10.1002/jso.2930310402

25. Takakura D, Harazono A, Hashii N, Kawasaki N. Selective glycopeptide profiling

by acetone enrichment and LC/MS. J Proteomics (2014) 101:17–30. doi: 10.1016/

j.jprot.2014.02.005

3. Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease.

Nat Rev Nephrol (2019) 15:346–66. doi: 10.1038/s41581-019-0129-4

4. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease.

Cell (2006) 126:855–67. doi: 10.1016/j.cell.2006.08.019

26. Asano M. Various biological functions of carbohydrate chains learned from

glycosyltransferase-deficient mice. Exp Anim (2020) 69:261–8. doi: 10.1538/

expanim.20-0013

5. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications.

Nat Rev Cancer (2015) 15:540–55. doi: 10.1038/nrc3982

27. Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, et al.

Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice

with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J

(1997) 16:1850–7. doi: 10.1093/emboj/16.8.1850

6. Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic

targets. Nat Rev Cancer (2005) 5:526–42. doi: 10.1038/nrc1649

7. Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol

Mech Dis (2015) 10:473–510. doi: 10.1146/annurev-pathol-012414-040438

28. Yoshihara T, Sugihara K, Kizuka Y, Oka S, Asano M. Learning/memory

impairment and reduced expression of the HNK-1 carbohydrate in b4galactosyltransferase-II-deficient mice. J Biol Chem (2009) 284:12550–61.

doi: 10.1074/jbc.M809188200

8. Zhou X, Yang G, Guan F. Biological functions and analytical strategies of sialic

acids in tumor. Cells (2020) 9:273. doi: 10.3390/cells9020273

9. Dobie C, Skropeta D. Insights into the role of sialylation in cancer progression and

metastasis. Br J Cancer (2021) 124:76–90. doi: 10.1038/s41416-020-01126-7

29. Nishie T, Hikimochi Y, Zama K, Fukusumi Y, Ito M, Yokoyama H, et al. b4Galactosyltransferase-5 is a lactosylceramide synthase essential for mouse extraembryonic development. Glycobiology (2010) 20:1311–22. doi: 10.1093/glycob/cwq098

10. Pearce OMT, Läubli H. Sialic acids in cancer biology and immunity. Glycobiology

(2016) 26:111–28. doi: 10.1093/glycob/cwv097

11. van Houtum EJH, Büll C, Cornelissen LAM, Adema GJ. Siglec signaling in the

tumor microenvironment. Front Immunol (2021) 12:790317. doi: 10.3389/

fimmu.2021.790317

30. Yoshihara T, Satake H, Nishie T, Okino N, Hatta T, Otani H, et al.

Lactosylceramide synthases encoded by B4galt5 and 6 genes are pivotal for neuronal

generation and myelin formation in mice. PloS Genet (2018) 14:e1007545. doi: 10.1371/

journal.pgen.1007545

12. Mensah SA, Harding IC, Zhang M, Jaeggli MP, Torchilin VP, Niedre MJ, et al.

Metastatic cancer cell attachment to endothelium is promoted by endothelial

glycocalyx sialic acid degradation. Aiche J Am Inst Chem Eng (2019) 65:e16634.

doi: 10.1002/aic.16634

31. Wu T, Li Y, Chen B. B4GALT3 promotes cell proliferation and invasion in

glioblastoma. Neurol Res (2020) 42:463–70. doi: 10.1080/01616412.2020.1740465

32. Sun Y, Yang X, Liu M, Tang H. B4GALT3 up-regulation by miR-27a contributes

to the oncogenic activity in human cervical cancer cells. Cancer Lett (2016) 375:284–92.

doi: 10.1016/j.canlet.2016.03.016

13. Gupta R, Leon F, Rauth S, Batra SK, Ponnusamy MP. A systematic review on the

implications of O-linked glycan branching and truncating enzymes on cancer

progression and metastasis. Cells (2020) 9:446. doi: 10.3390/cells9020446

14. Radhakrishnan P, Dabelsteen S, Madsen FB, Francavilla C, Kopp KL, Steentoft

C, et al. Immature truncated O-glycophenotype of cancer directly induces oncogenic

features. Proc Natl Acad Sci (2014) 111:E4066–75. doi: 10.1073/pnas.1406619111

33. Liu H, Chen D, Bi J, Han J, Yang M, Dong W, et al. Circular RNA circUBXN7

represses cell growth and invasion by sponging miR-1247-3p to enhance B4GALT3

expression in bladder cancer. Aging (2018) 10:2606–23. doi: 10.18632/aging.101573

15. Wang P, Li X, Xie Y. B4GalT1 regulates apoptosis and autophagy of glioblastoma

in vitro and in vivo. Technol Cancer Res Treat (2020) 19:153303382098010.

doi: 10.1177/1533033820980104

34. Luo CT, Liao W, Dadi S, Toure A, Li MO. Graded Foxo1 activity in Treg cells

differentiates tumour immunity from spontaneous autoimmunity. Nature (2016)

529:532–6. doi: 10.1038/nature16486

16. Dai Z, Wang K, Gao Y. The critical role of B4GALT4 in promoting microtubule

spindle assembly in HCC through the regulation of PLK1 and RHAMM expression. J

Cell Physiol (2022) 237:617–36. doi: 10.1002/jcp.30531

35. Desbois M, Udyavar AR, Ryner L, Kozlowski C, Guan Y, Dürrbaum M, et al.

Integrated digital pathology and transcriptome analysis identifies molecular mediators

of T-cell exclusion in ovarian cancer. Nat Commun (2020) 11:5583. doi: 10.1038/

s41467-020-19408-2

17. Tang W, Li M, Qi X, Li J. b1,4-galactosyltransferase V modulates breast cancer stem

cells through wnt/b-catenin signaling pathway. Cancer Res Treat (2020) 52:1084–102.

doi: 10.4143/crt.2020.093

36. Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, et al. An

immune atlas of clear cell renal cell carcinoma. Cell (2017) 169:736–49.e18.

doi: 10.1016/j.cell.2017.04.016

18. Han Y, Li Z, Wu Q, Liu H, Sun Z, Wu Y, et al. B4GALT5 high expression

associated with poor prognosis of hepatocellular carcinoma. BMC Cancer (2022)

22:392. doi: 10.1186/s12885-022-09442-2

37. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer

(2010) 127:759–67. doi: 10.1002/ijc.25429

19. Zhou H, Ma H, Wei W, Ji D, Song X, Sun J, et al. B4GALT family mediates the

multidrug resistance of human leukemia cells by regulating the hedgehog pathway and

the expression of p-glycoprotein and multidrug resistance-associated protein 1. Cell

Death Dis (2013) 4:e654–4. doi: 10.1038/cddis.2013.186

38. Martı́nez-Lostao L, Anel A, Pardo J. How do cytotoxic lymphocytes kill cancer

cells? Clin Cancer Res (2015) 21:5047–56. doi: 10.1158/1078-0432.CCR-15-0685

39. Gé rard A, Cope AP, Kemper C, Alon R, Köchl R. LFA-1 in T cell priming,

differentiation, and effector functions. Trends Immunol (2021) 42:706–22. doi: 10.1016/

j.it.2021.06.004

20. Chang H-H, Chen C-H, Chou C-H, Liao Y-F, Huang M-J, Chen Y-H, et al. b1,4-galactosyltransferase III enhances invasive phenotypes via b1-integrin and predicts

poor prognosis in neuroblastoma. Clin Cancer Res (2013) 19:1705–16. doi: 10.1158/

1078-0432.CCR-12-2367

40. Franciszkiewicz K, Le Floc’h A, Boutet M, Vergnon I, Schmitt A, Mami-Chouaib

F. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T Cells and

tumor cells promotes maturation and regulates T-cell effector functions. Cancer Res

(2013) 73:617–28. doi: 10.1158/0008-5472.CAN-12-2569

21. Chen C-H, Wang S-H, Liu C-H, Wu Y-L, Wang W-J, Huang J, et al. b-1,4Galactosyltransferase III suppresses b1 integrin-mediated invasive phenotypes and

negatively correlates with metastasis in colorectal cancer. Carcinogenesis (2014)

35:1258–66. doi: 10.1093/carcin/bgu007

41. Lötscher J, Martı́ i Lı́ndez A-A, Kirchhammer N, Cribioli E, Giordano Attianese

GMP, Trefny MP, et al. Magnesium sensing via LFA-1 regulates CD8+ T cell effector

function. Cell (2022) 185:585–602.e29. doi: 10.1016/j.cell.2021.12.039

22. Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor-derived exosomal miR1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver

cancer. Nat Commun (2018) 9:191. doi: 10.1038/s41467-017-02583-0

Frontiers in Immunology

42. Walling BL, Kim M. LFA-1 in T cell migration and differentiation. Front

Immunol (2018) 9:952. doi: 10.3389/fimmu.2018.00952

14

frontiersin.org

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る