リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on regulatory mechanisms of cell-to-cell communication in multicellularity of the filamentous fungus Aspergillus oryzae」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on regulatory mechanisms of cell-to-cell communication in multicellularity of the filamentous fungus Aspergillus oryzae

MAMUN, MD. ABDULLA AL 東京大学 DOI:10.15083/0002004924

2022.06.22

概要

Introduction
The emergence of multicellularity is an important transition in history of life on earth. The unicellular organisms evolved their genome structures and modified their morphological identities into a cell community for better mutual cooperation, which generated the organisms as multicellular. Gap junction and plasmodesmata are the major channels of cell-to-cell communication in animal and plant, respectively. Fungi contain both unicellular and multicellular species and could be considered as a good eukaryotic model for multicellularity study

Pezizomycotina species under the Ascomycota, one of fungal divisions, possess a primitive morphological structure for cell-to-cell communication in fungal multicellular organization. In vegetative phase, after hyphae grow a certain length with several nuclear divisions, a cross wall called septum (equivalent to cytokinesis) is formed by deposition of cell wall. In Pezizomycotina, septum formation is distinct from ascomycete yeast by retaining a septal pore at the center of septum, which allows exchange of cytoplasmic constituents between the flanking cells. Due to the porous septum morphology, Pezizomycotina are highly vulnerable to the risk of uncontrolled cytoplasmic loss via the septal pore upon hyphal wounding. A Pezizomycotina-specific organelle Woronin body plugs the septal pore and protects the adjacent cells from excessive loss of cytoplasm. Additionally, the septal pore is closed to block the communication between the flanking cells during mitosis.

Septal pore is highly dynamic, and the regulation involves complex mechanisms. Previously, genetic approach was employed to explore the components involved in septal pore-based multicellularity. However, comparative genomic approach between multicellular and unicellular fungal species has not yet been employed to investigate additional components/mechanisms in the regulation of cell-to-cell communication. In the thesis, I performed a genomic comparison between multicellular and unicellular ascomycetes as Ascomycota possesses a number of genetically well-analyzed species, and subsequent localization screening of the selected proteins to find novel components regulating the cell-to-cell communication via septal pore. In this study, I used Aspergillus oryzae due to having a unique experiment system of quantitatively analyzing the ability to protect the flanking cells upon hypotonic shock-induced hyphal wounding, which reflects septal pore states or Woronin body function.

Chapter 1: Identification of a novel Pezizomycotina-specific actin regulator for septum formation
Fungal septum formation is commonly regulated by contractile actin ring, whereas Pezizomycotina species do not completely divide the cells by the retention of septal pore, which mechanistically differs from complete separation of daughter cells in unicellular ascomycete yeasts. For finding a Pezizomycotina-specific actin regulator, I designed a screening strategy based on bioinformatics tools. Firstly, gene ontology (GO) terms for actin were employed for selecting candidate actin regulators from A. oryzae genome database. Secondly, based on protein BLAST, I preferentially selected genes conserved in Pezizomycotina but not conserved in ascomycete yeasts and got three genes. After excluding functionally characterized two, the finally selected gene encodes a protein containing three gelsolin domains. The gene was designated as glpA (for gelsolin-like protein) and encodes a protein of 1837 amino acids. Gelsolin is generally known as an actin-modulating protein with severing activity. Phylogenetic analysis showed that GlpA forms as a Pezizomycotina-specific clade with other orthologues from multicellular fungal species.

Gene deletion strain of glpA was generated for observing septum formation phenotype. glpA deletion resulted in infrequent septum formation as supported by the abnormally increased distances of hyphal cells. Approximately 70% of the septa were found to be morphologically abnormal in ΔglpA. Septal pore function in ΔglpA was analyzed by hypotonic shock-induced hyphal tip bursting. It was reported that Woronin body protects the hyphae from excessive loss of cytoplasm at the adjacent second cell upon hyphal tip bursting. Wild type showed 84% ability to prevent the cytoplasmic loss, while ΔglpA showed only 13% ability comparable to that of Woronin body-deficient ΔAohex1 (18%). The regulation of septal pores in ΔglpA under stress was analyzed by tracking the cell-to-cell transfer of Dendra2, a green-to-red photoconvertible fluorescent protein. In normal condition, the red fluorescence of photoconverted Dendra2 transferred into the adjacent cell via the septal pore with the ratio of 75% in wild type. Upon cold stress at 4oC, translocation ratio of Dendra2 was decreased to 6% in wild type, while Dendra2 still transferred in ΔglpA and ΔAohex1 with the ratios of 45% and 33%, respectively. These results indicated that the regulation of septal pore function was abnormal in ΔglpA.

As gelsolin is generally known as actin-severing protein, actin dynamics in ΔglpA was observed by visualizing with Lifeact-EGFP. While actin predominantly localized at hyphal tip and sub-apical collar in wild type, multiple actin cables and larger sized actin patches were found in ΔglpA. Contractile actin ring typically seen during septum formation was abnormal in ΔglpA with improper actin ring assembly, failure of ring constriction and irregularly orientated constriction.

By fluorescence microscopic observation using EGFP fusion, GlpA was found to localize at hyphal tip as a crescent-like structure. GlpA localized at septum formation site similarly to contractile actin ring, and accumulated at the septal pore with 50% frequency upon hyphal wounding. N-terminal region consisting of 329 amino acids was sufficient for localization at septum formation site. In contrast, C-terminal region containing three gelsolin domains was required for GlpA localization at hyphal tip. The role of gelsolin domains in regulating actin dynamics was evaluated by Lifeact-EGFP in the strain expressing truncated GlpA. The absence of three gelsolin domains resulted in overaccumulation of actin at the hyphal tip as well as abnormal contractile actin ring during septum formation. Truncation of the N-terminal 329 aa led to infrequent septum formation and reduced the ability to plug the septal pore upon hyphal wounding similarly to ΔglpA.

Taken together, I elucidated a novel actin modulating component, which specifically participates in septum formation by regulating actin ring assembly and constriction as well as has a role in septal pore function in Pezizomycotina-specific multicellular fungi.

Chapter 2: Genomic comparison and localization-based screening for identification of novel septum-localizing proteins
Cell-to-cell communication via the septal pore is the fundamental morphological signature of multicellularity in Pezizomycotina. Septal pore is highly dynamic, and Woronin body is the known key regulator. Genomic comparison between genetically characterized unicellular and multicellular fungi could be the strong strategy for finding new components regulating septum formation/septal pore function. Together with collaborators Prof. Nakamura and Dr. Cao from Toyo University, I performed BLAST-based comparison to get genes related to multicellular organization. I searched for conserved genes in multicellular ascomycetes such as Aspergillus fumigatus and Aspergillus nidulans with e-values less than e-100 . A. oryzae genes conserved in ascomycete yeasts such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans were excluded with e-values more than e-30 , and thus 2104 genes were selected eventually as multicellularityspecific. Second selection was done using gene ontology (GO) term “no biological data available (ND)” for molecular function, cellular component and biological process. Finally, 776 A. oryzae genes were selected as multicellularity-specific uncharacterized.

For localization analysis, selected proteins were expressed as C-terminal EGFP fusion in A. oryzae. To date,767 proteins were characterized, and various localization patterns were found such as cytoplasmic 37.7% (289 proteins), organelle-like 38.6% (296 proteins), no GFP signal 11.9% (91 proteins), hyphal tip 2.3% (18 proteins), plasma membrane 4.0% (31 proteins) and septum/septal pore 7.8% (60 proteins). Out of the 60 proteins showing the septum-related localization, 14 proteins localized at both sides of the septum, 29 proteins at around the septal pore as ring-like structure, and 4 proteins along the septum. Thirteen proteins found in the cytoplasm/organelle in normal condition accumulated at the septal pore upon hyphal wounding

Chapter 3: Functional analysis of septum-localizing proteins in cell-to-cell communication
For functional analysis, I generated deletion strains for 56 of 60 septum-localizing proteins by replacing the genes with the pyrG selective marker. The septal pore plugging ability of the deletion strains was evaluated by hypotonic shock-induced hyphal tip bursting, and hyphae protected from excessive cytoplasmic loss were counted. Approximately 40% of the deletion strains showed reduced ability to prevent excessive loss of cytoplasm. The lowest ability to prevent excessive cytoplasmic loss was observed in some of deletions with genes encoding proteins to accumulate at the septal pore upon wounding

Chapter 4: Functional characterization of transglutaminase in regulation of fungal multicellularity
In the above-mentioned screening, deletion of the gene AO090023000250 encoding a 697 aa protein with transglutaminase domain showed the lowest ability to prevent excessive cytoplasmic loss among the deletion strains. Transglutaminase is Ca2+ -dependent cross-linking enzyme modulating post-translational modification of proteins and plays important physiological functions such as blood clotting and wound healing. Transglutaminase domain characteristically contains conserved catalytic tried. Amino acid substitutions at the putative catalytic residues of AO090023000250 (Cys417Ala and Asp480Ala) resulted in the deletion-like phenotype with a reduced ability of septal pore plugging, suggesting that catalytic triad in transglutaminase is functionally important for septal pore regulation. In truncation analysis, N-terminal region (1-359 aa) was required for accumulation at the septal pore upon hyphal wounding, while C-terminal region including transglutaminase domain evenly distributed in the cytoplasm. These data suggest that N-terminal region targets the septal pore and that transglutaminase domain could perform catalytic activity for protein cross-linking when plugging the septal pore upon hyphal wounding.

In conclusion, a novel protein GlpA identified as Pezizomycotina-specific by bioinformatics tools has a major role in the septum formation by regulating contractile actin ring and proper septal pore function. Furthermore, genomic comparison along with localization screening allowed finding many novel proteins having a role in fungal cell-to-cell communication. These findings suggest that multicellular fungi have been evolved to acquire machineries for the proper regulation of cell-to-cell connectivity via septal pore.

この論文で使われている画像

参考文献

Amari, K., Boutant, E., Hofmann, C., Schmitt-Keichinger, C., Fernandez-Calvino, L., Didier, P., Lerich,

A., Mutterer, J., Thomas, C.L., Heinlein, M., Mély, Y., Maule, A.J, Ritzenthaler, C. (2010). A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins.PLoS Pathog. 6(9): e1001119

Anderson, D.P., Whitney, D.S., Hanson-Smith, V., Woznica, A., Campodonico-Burnett, W., Volkman, B.F., King, N., Thornton, J.W., Prehoda, K.E. (2016). Evolution of an ancient protein function involved in organized multicellularity in animals. Elife, 5: e10147

Araujo-Bazán L., Peñalva M.A., Espeso E.A. (2008). Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 67: 891–905.

Ariens, R.A.S., Lai, T-S., Weisel, J.W., Greenberg, C.S., Grant, P.J. (2002). Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 100(3):743–754.

Barnes, R. N., Bungay, P. J., Elliott, B. M., Walton, P. L. and Griffin, M. (1985) Alterations in the distribution and activity of transglutaminase during tumour growth and metastasis. Carcinogenesis 6: 459–463

Barr F.A., Gruneberg U. (2007). Cytokinesis: placing and making the final cut. Cell 131: 847–860.

Basu, R., Banerjee, K., Bose, A., Das, Sarma, J. (2015). Mouse Hepatitis Virus Infection Remodels Connexin43- Mediated Gap Junction Intercellular Communication In Vitro and In Vivo.J. Virol. 90(5):2586-99

Bayram, Ö., Bayram, Ö.S., Ahmed, Y.L., Maruyama, J., Valerius, O., Rizzoli, S.O., Ficner, R., Irniger, S., Braus, G.H. (2012). The Aspergillus nidulans MAPK Module AnSte11-Ste50- Ste7-Fus3 Controls Development and Secondary Metabolism. PLoS Genet. 8(7):e1002816

Beck, J., Echtenacher, B., Ebel, F. (2013). Woronin bodies, their impact on stress resistance and virulence of the pathogenic mould Aspergillus fumigatus and their anchoring at the septal pore of filamentous Ascomycota. Mol. Microbiol. 89(5):857-71

Begg, G.E., Carrington, L., Stokes, P.H., Matthews, J.M., Wouters, M.A., Husain, A., Lorand, L., Iismaa, S.E., Graham, R.M. (2006). Mechanism of allosteric regulation of transglutaminase 2 by GTP. Proc. Natl. Acad. Sci. U S A. 103(52):19683-8.

Berepiki A., Lichius A., Read N.D. (2011). Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 9: 876–887.

Bergs A., Ishitsuka Y., Evangelinos M., Nienhaus G.U., Takeshita N. (2016). Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans. Front Microbiol 7: 682.

Berra-Romani, R., Raqeeb, A., Torres-Jácome, J., Guzman-Silva, A., Guerra, G., Tanzi, F., Moccia, F. (2011). The mechanism of injury-induced intracellular calcium concentration oscillations in the endothelium of excised rat aorta. J Vasc Res. 49(1):65-76.

Beyer, E. C., Berthoud, V. M.(2018). Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim.Biophys. Acta Biomembr.1860(1):5-8

Bleichrodt R.J., van Veluw G.J., Recter B., Maruyama J., Kitamoto K., Wösten H.A. (2012). Hyphal heterogeneity in Aspergillus oryzae is the result of dynamic closure of septa by Woronin bodies. Mol Microbiol 86: 1334–1344.

Bloemendal, S & Kück U. (2013). Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften 100(1):3-19

Bloemendal, S., Kück, U.(2013). Cell-to-cell communication in plants, animals, and fungi: a comparative review.Naturwissenschaften, 100 (1):3-19

Boyce, K.J & Andrianopoulos, A. (2015). Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol. Rev. 39(6):797-811

Bruno K.S., Morrell J.L., Hamer J.E., Staiger C.J. (2001). SEPH, a Cdc7p orthologue from Aspergillus nidulans, functions upstream of actin ring formation during cytokinesis. Mol Microbiol 42: 3–12.

Burch-Smith, T. M& Zambryski, P. C.(2012). Plasmodesmata paradigm shift: regulation from without versus within.Annu. Rev. Plant Biol.63:239-60

Calvert M.E., Wright G.D., Leong F.Y, Chiam K.H., Chen Y., Jedd G., Balasubramanian M.K. (2011). Myosin concentration underlies cell size–dependent scalability of actomyosin ring constriction. J Cell Biol 195: 799–813.

Castellano, P& Eugenin, E. A. (2014). Regulation of gap junction channels by infectious agents and inflammation in the CNS.Front. Cell Neurosci. 8:122.

Chen, C.H, Ringelberg, C.S., Gross, R.H., Dunlap, J.C., Loros, J.J. (2009). Genome-wide analysis of light inducible responses reveals hierarchical light signalling in Neurospora. EMBO J. 8:1029-42.

Choi, J & Kim SH. (2017). A genome Tree of Life for the Fungi kingdom. Proc. Natl. Acad. Sci. U S A. 114 (35):9391-9396

Claessen, D., Rozen, D.E., Kuipers, O.P., Søgaard-Andersen, L., van Wezel, G.P.(2014).Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies.Nat. Rev. Microbiol.12(2):115-24.

Clarke, D. D., Mycek, M. J., Neidle, A. and Waelsch, H. (1957) The incorporation of amines into proteins. Arch. Biochem. Biophys. 79: 338-354

Colot, H.V., Park, G., Turner, G.E., Ringelberg, C., Crew, C.M., Litvinkova, L.,Weiss, R.L., Borkovich, K.A., Dunlap, J.C. (2006). A highthroughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl. Acad. Sci. USA 103:10352-7

Crampin, H., Finley, K., Gerami-Nejad, M., Court, H., Gale, C., Berman, J., Sudbery, P. (2005). Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. J. Cell. Sci. 118(Pt 13):2935-47.

Cui, W., Lee, J.Y.(2016).Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress.Nat Plants. 2(5):16034 de Mendoza, A., Sebé-Pedrós, A., Šestak, M.S., Matejcic, M., Torruella, G., Domazet-Loso, T., Ruiz-Trillo, I. (2013). Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages.Proc. Natl. Acad. Sci. U S A.110(50):E4858-66

De Souza CP, Hashmi SB, Osmani AH, Osmani SA. (2014). Application of a new dual localization-affinity purification tag reveals novel aspects of protein kinase biology in Aspergillus nidulans. PLoS One 9:e90911

Del Duca, S., Beninati, S. and Serafini-Fracassini, D. (1995) Polyamines in chloroplasts: identification of their glutamyl and acetyl derivatives. Biochem. J. 305:233-237

Delgado-Álvarez D.L., Bartnicki-García S., Seiler S., Mouriño-Pérez R.R. (2014). Septum development in Neurospora crassa: the septal actomyosin tangle. PLoS One 9: e96744.

DePaola, N., Davies, P. F., Pritchard, W. F Jr., Florez, L., Harbeck, N., Polacek, D. C. (1999). Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to cont rolled disturbed flows in vitro.Proc. Natl. Acad. Sci. U S A. 96(6):3154-9.

Dieterich, W., Ehnis, T., Bauer, M., Donner, P., Volta, U., Riecken, E. O. and Schuppan, D. (1997) Identification of tissue transglutaminase as the autoantigen of coeliac disease. Nat. Med. 3: 797–801

Eckert, R.L., Kaartinen, M.T., Nurminskaya, M., Belkin, A.M., Colak, G., Johnson, G.V., Mehta, K. (2014). Transglutaminase regulation of cell function. Physiol. Rev. 94(2):383-417

Ellison, D., Mugler, A., Brennan, M.D., Lee, S.H., Huebner, R.J., Shamir, E.R., Woo, L.A., Kim, J., Amar, P., Nemenman, I., Ewald, A.J., Levchenko, A. (2016). Cell–cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesisProc. Natl. Acad. Sci. U S A.113(6): E679-88

Escaño, C.S., Juvvadi, P.R., Jin, F.J., Takahashi, T., Koyama, Y., Yamashita, S., Maruyama, J., Kitamoto, K. (2009). Disruption of the Aopex11-1 gene involved in peroxisome proliferation leads to impaired woronin body formation in Aspergillus oryzae. Eukaryot. Cell 8(3):296-305

evolutionary convergence, single origin, or both? Biol. Rev. Camb. Philos. Soc. 93(4):1778-1794

Fischer, M.S., Glass, N.L. (2019). Communicate and fuse: how filamentous fungi establish and maintain an interconnected mycelial network. Front. Microbiol. 10:619

Fleißner A., Simonin A.R., Glass N.L. (2008) Cell Fusion in the Filamentous Fungus, Neurospora crassa. In: Chen E.H. (eds) Cell Fusion. Methods in Molecular Biology™, vol 475. Humana Press

Fleissner, A & Glass NL. (2007). SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs. Eukaryot Cell. 6(1):84-94

Fricker, M. D., Heaton L.L.M., Jones, N.S., Boddy, L. (2017). The Mycelium as a Network. Microbiol Spectr5(3).

Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Baştürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus

GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Peñalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW. (2005). Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. 438(7071):1105-15

Ghoshdastider U., Popp D., Burtnick L.D., Robinson R.C. (2013). The expanding superfamily of gelsolin homology domain proteins. Cytoskeleton (Hoboken) 70: 775–795.

Giepmans, B. N.(2004). Gap junctions and connexin-interacting proteins. Cardiovasc. Res. 62(2):233-45.

Gladner, J.A & Nossal R. (1983). Effects of crosslinking on the rigidity and proteolytic susceptibility of human fibrin clots. Thromb. Res. 30(3):273-88.

Goffeau A1 , Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG. (1996) Life with 6000 genes. Science 274(5287):546, 563-7.

Gonçalves, A.P., Heller, J., Span, E.A., Rosenfield, G., Do, H.P., Palma-Guerrero, J., Requena, N., Marletta, M.A., Glass, N.L. (2019). Allorecognition upon fungal cell-cell contact determines social cooperation and impacts the acquisition of multicellularity. Curr. Biol. 29 (18):3006-3017

Gould, S.J., Keller, G.A., Schneider, M., Howell, S.H., Garrard, L.J., Goodman, J.M., Distel, B., Tabak, H., Subramani, S. (1990). Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J. 9(1):85-90.

Griffin, M., Smith, L. L. and Wynne, J. (1979) Changes in transglutaminase activity in an experimental model of pulmonary fibrosis induced by paraquat. Br. J. Exp. Pathol 60: 653–661

Griffin, M., Casadio, R., Bergamini, C.M. (2002). Transglutaminases: nature's biological glues. Biochem. J. 368(Pt 2):377-96.

Grison, M.S., Brocard, L., Fouillen, L., Nicolas, W., Wewer, V., Dörmann, P., Nacir, H., Benitez-Alfonso, Y., Claverol, S., Germain, V., Boutté, Y., Mongrand, S., Bayer, E.M.(2015).Specific membrane lipid composition is important for plasmodesmata function in Arabidop sis. Plant Cell27(4):1228-50

Guertin D.A., Trautmann S., McCollum D. (2002). Cytokinesis in eukaryotes. Microbiol Mol Biol Rev 66: 155–178.

Guha M., Zhou M., Wang Y.L. (2005). Cortical actin turnover during cytokinesis requires myosin II. Curr Biol15: 732–736.

Gundemir, S., Colak, G., Tucholski, J., Johnson, G.V. (2012). Transglutaminase 2: A molecular Swiss army knife. Biochim Biophys Acta. 1823(2):406-19

Gunning, P.W., Schevzov, G., Kee, A.J., Hardeman, E.C. (2005). Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol. 15(6):333-41

Hachiya, N.S., Kozuka, Y., Kaneko, K. (2008). Mechanical stress and formation of protein aggregates in neurodegenerative disorders. Med. Hypot,heses. 70(5):1034-7

Han P., Jin F.J., Maruyama J., Kitamoto K. (2014). A large nonconserved region of the tethering protein Leashin is involved in regulating the position, movement, and function of Woronin bodies in Aspergillus oryzae. Eukaryot Cell 13: 866–877.

Harris S.D. (2001). Septum formation in Aspergillus nidulans. Curr Opin Microbiol 4: 736–739.

Harris S.D., Read N.D., Roberson R.W., Shaw B., Seiler S., Plamann M., Momany M. (2005). Polarisome meets spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 4: 225–229.

Harris S.D., Hamer J.E. (1995). sepB: an Aspergillus nidulans gene involved in chromosome segregation and the initiation of cytokinesis. EMBO J 14: 5244–5257.

Harris S.D., Morrell J.L., Hamer J.E. (1994). Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136: 517–532.

Hasegawa H., Hyodo T., Asano E., Ito S., Maeda M., Kuribayashi H., Natsume A., Wakabayashi T., Hamaguchi M., Senga T. (2013). The role of PLK1-phosphorylated SVIL in myosin II activation and cytokinetic furrowing. J Cell Sci 126: 3627–3637.

Hayakawa, Y., Ishikawa, E., Shoji, J.Y., Nakano, H., Kitamoto, K. (2011). Septum‐directed secretion in the filamentous fungus Aspergillus oryzae. Mol. Microbiol. 81(1):40-55.

He P.H., Dong W.X., Chu X.L., Feng M.G., Ying S.H. (2016). The cellular proteome is affected by a gelsolin (BbGEL1) during morphological transitions in aerobic surface versus liquid growth in the entomopathogenic fungus Beauveria bassiana. Environ Microbiol 18: 4153–4169.

Hong, M.P., Vu, K., Bautos, J., Gelli, A. (2010). Cch1 restores intracellular Ca2+ in fungal cells during endoplasmic reticulum stress. J. Biol. Chem. 285(14):10951-8

Huang H.T., Maruyama J., Kitamoto K. (2013). Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi. PLoS One 8: e72209.

Huang, D., Sun, Y., Ma, Z., Ke, M., Cui, Y., Chen, Z., Chen, C., Ji, C., Tran, T.M., Yang, L., Lam, S.M., Han, Y., Shu, G., Friml, J., Miao, Y., Jiang, L., Chen, X. (2019). Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proc. Natl. Acad. Sci. U S A. 116(42):21274-21284

Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., O'Shea, E.K. Global analysis of protein localization in budding yeast. (2003). Nature 425(6959):686-91.

Ichinomiya M., Yamada E., Yamashita S., Ohta A., Horiuchi H. (2005). Class I and Class II chitin synthases are involved in septum formation in the filamentous fungus Aspergillus nidulans Eukaryot Cell 14: 1125–1136.

Jahn, M., Vialas, V., Karlsen, J., Maddalo, G., Edfors, F., Forsström, B., Uhlén, M., Käll, L., Hudson, E.P. (2018) Growth of cyanobacteria is constrained by the abundance of light and carbon assimilation proteins.Cell Rep. 25 (2):478-486

Jedd G., Chua N.H. (2000). A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2: 226–231.

Jedd, G & Chua NH. (2000). A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane.Nat. Cell Biol. 2(4):226-31

Jin, F.J., Maruyama, J., Juvvadi, P.R., Arioka, M., Kitamoto, K. (2004) Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae. FEMS Microbiol. Lett. 239(1):79-85

Jin, F.J., Maruyama, J., Juvvadi, P.R., Arioka, M., Kitamoto, K. (2004) Adenine auxotrophic mutants of Aspergillus oryzae: development of a novel transformation system with triple auxotrophic hosts. Biosci Biotechnol Biochem. 68(3):656-62.

Jones T1, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S. (2004) The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. U S A. 101(19):7329-34

Jonkers, W., Leeder, A.C., Ansong, C., Wang, Y., Yang, F., Starr, T.L., Camp, D.G., Smith, R.D., Glass, N.L. (2014). HAM-5 Functions As a MAP Kinase Scaffold during Cell Fusion in Neurospora crassa. PLoS Genet. 10(11):e1004783.

Justa-Schuch, D., Heilig, Y., Richthammer, C., Seiler, S. (2010). Septum formation is regulated by the RHO4‐ specific exchange factors BUD3 and RGF3 and by the landmark protein BUD4 in Neurospora crassa. Mol. Microbiol. 76(1):220-35.

Juvvadi, P.R., Gehrke, C., Fortwendel, J.R., Lamoth, F., Soderblom, E.J., Cook, E.C., Hast, M.A., Asfaw, Y.G., Moseley, M.A., Creamer, T.P., Steinbach, W.J. (2013). Phosphorylation of Calcineurin at a Novel Serine-Proline Rich Region Orchestrates Hyphal Growth and Virulence in Aspergillus fumigates. PLoS Pathog 9(8):e1003564.

Juvvadi, PR., Maruyama, J., Kitamoto, K. (2007). Phosphorylation of the Aspergillus oryzae Woronin body protein, AoHex1, by protein kinase C: evidence for its role in the multimerization and proper localization of the Woronin body protein. Biochem. J. 405(3):533-40.

Katayama T., Uchida H., Ohta A., Horiuchi H. (2012). Involvement of protein kinase C in the suppression of apoptosis and in polarity establishment in Aspergillus nidulans under conditions of heat stress. PLoS One 7: e50503.

Kim J.M., Lu L., Shao R., Chin J., Liu B. (2006). Isolation of mutations that bypass the requirement of the septation initiation network for septum formation and conidiation in Aspergillus nidulans. Genetics 173: 685–696.

Kim J.M., Zeng C.J., Nayak T., Shao R., Huang A.C, Oakley B.R., Liu B. (2009). Timely septation requires SNAD-dependent spindle pole body localization of the septation initiation network components in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 20: 2874–2884.

Kiss, E., Hegedüs., Virágh, M., Varga, T., Merényi, Z., Kószó, T., Bálint, B., Prasanna, A.N., Krizsán,

K., Kocsubé, S., Riquelme, M., Takeshita, N., Nagy, L.G. (2019). Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat. Commun. 10(1):4080

Krizsán, K., Almási, É., Merényi, Z., Sahu, N., Virágh, M., Kószó, T., Mondo, S., Kiss, B., Bálint, B., Kües, U., Barry, K., Cseklye, J., Hegedüs, B., Henrissat, B., Johnson, J., Lipzen A., Ohm, R.A., Nagy, I., Pangilinan, J., Yan, J., Grigoriev, I.V., Hibbett, D.S., Nagy, L.G. (2019). Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc. Natl. Acad. Sci. U S A. 116(15):7409-7418

Kuehn M.J., Herrmann J.M., Schekman R. (1998). COPII cargo interactions direct protein sorting into ERderived transport vesicles. Nature 391: 187–190.

Kumar, K., Mella-Herrera, R.A., Golden, J.W. (2010) Cyanobacterial heterocysts.Cold Spring Harb. Perspect. Biol.2(4):a000315

Lai, J., Koh, C.H., Tjota, M., Pieuchot, L., Raman, V., Chandrababu, K.B., Yang, D., Wong, L., Jedd, G. (2012). Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity Proc. Natl. Acad. Sci. U S A.109 (39):15781-6

Laurell, E., Beck, K., Krupina, K., Theerthagiri, G., Bodenmiller, B., Horvath, P., Aebersold, R., Antonin, W., Kutay ,U. (2011). Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144: 539–550.

Lesort, M., Tucholski, J., Miller, M. L. and Johnson, G. V. (2000) Tissue transglutaminase : a possible role in

neurodegenerative diseases. Prog. Neurobiol. 61: 439–463

Lévy, E., El Banna, N., Baïlle, D., Heneman-Masurel, A., Truchet, S., Rezaei, H., Huang, M.E., Béringue, V., Martin, D., Vernis, L. (2019). Causative Links between Protein Aggregation and Oxidative Stress: A Review. Int. J. Mol. Sci. 20(16). pii: E3896.

Liu, F., Ng, S.K., Lu, Y., Low, W., Lai, J., Jedd, G. (2008). Making two organelles from one: Woronin body biogenesis by peroxisomal protein sorting. J. Cell Biol. 180(2):325-39

Liu, S., Cerione, R.A., Clardy, J. (2002). Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc. Natl. Acad. Sci. U S A. 99(5):2743-7.

Mabashi, Y., Kikuma, T., Maruyama, J., Arioka, M., Kitamoto, K. (2006). Development of a versatile expression plasmid construction system for Aspergillus oryzae and its application to visualization of mitochondria. Biosci. Biotechnol. Biochem. 70(8):1882-9.

Machida M., Asai K., Sano M., Tanaka T., Kumagai T., Terai G., Kusumoto K., Arima T., Akita O., Kashiwagi Y., Abe K., Gomi K., Horiuchi H., Kitamoto K., Kobayashi T., Takeuchi M., Denning DW., Galagan J.E., Nierman W.C., Yu J., Archer D.B., Bennett J.W., Bhatnagar D., Cleveland T.E., Fedorova N.D., Gotoh O., Horikawa H., Hosoyama A., Ichinomiya M., Igarashi R., Iwashita K., Juvvadi P.R., Kato M., Kato Y., Kin T., Kokubun A., Maeda H., Maeyama N., Maruyama J., Nagasaki H., Nakajima T., Oda K., Okada K., Paulsen I., Sakamoto K., Sawano T., Takahashi M., Takase K., Terabayashi Y., et al. (2005). Genome sequencing and analysis of Aspergillus oryzae. Nature 438: 1157–1161.

Mamun, M.A., Katayama, T., Maruyama, J. Discovery of a novel gelsolin-like protein regulating septum formation in filamentous fungi. JSBBA annual meeting 2019.

Maruyama and Kitamoto (2019) The Mycota VIII, pp. 3-14

Maruyama J., Kitamoto K. (2008). Multiple gene disruptions by marker recycling with highly efficient genetargeting background (ΔligD) in Aspergillus oryzae. Biotechnol Lett 30: 1811–1817.

Maruyama J., Kitamoto K. (2011). Targeted gene disruption in koji mold Aspergillus oryzae. Methods Mol Biol 765: 447–456.

Maruyama J., Juvvadi P.R., Kitamoto K. (2005). Three-dimensional image analysis of plugging at the septal pore by Woronin body during hypotonic shock inducing hyphal tip bursting in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun 331: 1081–1088.

Maruyama, J., Escaño, C.S., Kitamoto, K. (2010) AoSO protein accumulates at the septal pore in response to various stresses in the filamentous fungus Aspergillus oryzae. Biochem. Biophys. Res. Commun. 391(1):868-73

Maruyama, J., Kikuchi, S., Kitamoto, K. (2006). Differential distribution of the endoplasmic reticulum network as visualized by the BipA–EGFP fusion protein in hyphal compartments across the septum of the filamentous fungus, Aspergillus oryzae. Fungal Genet. Biol. 43(9):642-54.

Maruyama, J., Nakajima, H., Kitamoto, K. (2001). Visualization of nuclei in Aspergillus oryzae with EGFP and analysis of the number of nuclei in each conidium by FACS. Biosci Biotechnol Biochem. 65(7):1504-10.

Matsuo K., Higuchi Y., Kikuma T., Arioka M., Kitamoto K. (2013). Functional analysis of Abp1p-interacting proteins involved in endocytosis of the MCC component in Aspergillus oryzae. Fungal Genet Biol 56: 125–134.

Matsuyama, A., Arai, R., Yashiroda, Y., Shirai, A., Kamata, A., Sekido, S., Kobayashi, Y., Hashimoto, A., Hamamoto, M., Hiraoka, Y., Horinouchi, S., Yoshida, M. (2006). ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol. 24(7):841-7

Mela A.P., Momany M. (2018). Internuclear histone H1 transport in the filamentous fungus Aspergillus nidulans. PLoS One 13: e0201828.

Mendes Pinto I., Rubinstein B., Kucharavy A., Unruh J.R., Li R.. (2012). Actin depolymerization drives actomyosin ring contraction during budding yeast cytokinesis. Dev Cell 22: 1247–1260.

Momany, M., Richardson, E.A., Van Sickle, C., Jedd, G. (2002). Aapping Woronin body position in Aspergillus nidulans. Mycologia 94(2):260-6.

Moore, R.T., and McAlear, J.H. (1962) Fine structures of mycota. Observations on septa of ascomycetes and basidiomycetes. Am. J. Bot. 49: 86–94.

Mori N., Katayama T., Saito R., Iwashita K., Maruyama J. (2019). Inter-strain expression of sequence-diverse HET domain genes severely inhibits growth of Aspergillus oryzae. Biosci Biotechnol Biochem 83: 1557–1569.

Mouriño-Pérez R.R. (2013). Septum development in filamentous ascomycetes. Fungal Biol Rev 27: 1–9.

Murthy, S.N., Wilson, J.H., Lukas, T.J., Veklich, Y., Weisel, J.W., Lorand L. (2000). Transglutaminasecatalyzed crosslinking of the Aalpha and gamma constituent chains in fibrinogen. Proc. Natl. Acad. Sci. U S A. 97(1):44-8.

Nag S., Larsson M., Robinson R.C., Burtnick L.D. (2013). Gelsolin: the tail of a molecular gymnast. Cytoskeleton 70: 360–384.

Nagy, L. G. (2017). Evolution: Complex Multicellular Life with 5,500 Genes. Curr Biol. 27(12):R609-R612

Nagy, L.G., Kovács, G.M., Krizsán, K. (2018). Complex multicellularity in fungi:

Nahrendorf, M., Hu, K., Frantz, S., Jaffer, F.A., Tung, C.H., Hiller, K.H, Voll, S., Nordbeck, P., Sosnovik, D., Gattenlohner, S., Novikov, M., Dickneite, G., Reed, G.L., Jakob, P., Rosenzweig, A., Bauer, W.R., Weissleder, R., Ertl, G. (2006). Factor XIII deficiency causes cardiac rupture, impairs wound healing,

and aggravates cardiac remodeling in mice with myocardial infarction. Circulation 113: 1196 –1202

Nakaoka, H., Perez, D.M., Baek, K.J., Das, T., Husain, A., Misono, K., Im, M.J, Graham, R.M. (1994). Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264: 1593–1596,

Nemes, Z., Marekov, L.N., Fesus, L., Steinert, P.M. (1999). A novel function for transglutaminase 1: attachment of long-chain omega-hydroxyceramides to involucrin by ester bond formation. Proc. Natl. Acad. Sci. USA. 96: 8402– 8407

Neuroscience 102(2):481-91. Ng, S.K., Liu, F., Lai, J., Low, W., Jedd, G. (2009). A tether for Woronin body inheritance is associated with

evolutionary variation in organelle positioning. PLoS Genet. 5(6):e1000521

Nguyen, T.A., Cissé, OH., Yun, Wong, J., Zheng, P., Hewitt, D., Nowrousian, M., Stajich, J.E., Jedd, G. (2017). Innovation and constraint leading to complex multicellularity in the Ascomycota. Nat. Commun. 8:14444

Nichols, S. A, Dirks, W., Pearse, J. S. & King, N. (2006). Early evolution of animal cellsignaling and adhesion genes. Proc. Natl. Acad. Sci. U. S. A. 103 (33), 12451–12456.

Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, García JL, García MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jiménez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack

S, Kulkarni R, Kumagai T, Lafon A, Latgé JP, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O'Neil S, Paulsen I, Peñalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez de Córdoba S, Rodríguez-Peña JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sánchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de Aldana CR, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW. (2005). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438(7071):1151-6.

Niklas, K.J., Newman, S.A.(2013).The origins of multicellular organisms.Evol. Dev.15(1):41-52

Ogen-Shtern, N., Ben David, T., Lederkremer, G.Z. (2016). Protein aggregation and ER stress. Brain Res. 1648(Pt B):658-666

Ohneda, M., Arioka, M., Nakajima, H., Kitamoto, K. (2002). Visualization of vacuoles in Aspergillus oryzae by expression of CPY–EGFP. Fungal Genet. Biol. 37(1):29-38.

Pan, L., Zhang, P., Hu, F., Yan, R., He, M., Li, W., Xu, J., Xu, K. (2019). Hypotonic stress induces fast, reversible degradation of the vimentin cytoskeleton via intracellular calcium release Adv Sci (Weinh) 6(18):1900865.

Pappas, P.G., Rotstein, C.M., Betts, R.F., Nucci, M., Talwar, D., De, Waele, J.J., Vazquez, J.A., Dupont, B.F, Horn, D.L., Ostrosky-Zeichner, L., Reboli, A.C., Suh, B., Digumarti, R., Wu, C., Kovanda, L.L., Arnold, L.J., Buell, D.N. (2007). Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin. Infect. Dis. 45(7):883-93

Pearson, C.L., Xu, K., Sharpless, K.E., Harris, S.D. (2004) MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans. Mol. Biol. Cell 15(8):3658-72

Pedersen, L.C., Yee, V.C., Bishop, P.D., Le Trong, I., Teller, D.C., Stenkamp, R.E. (1994). Transglutaminase factor XIII uses proteinase-like catalytic triad to crosslink macromolecules. Protein Sci. 3(7):1131-5.

Pelham, H.R., Hardwick, K.G., Lewis, M.J. (1988). Sorting of soluble ER proteins in yeast. EMBO J. 7(6):1757-62.

Perez-de-Nanclares-Arregi E., Etxebeste O. (2014). Photo-convertible tagging for localization and dynamic analyses of low-expression proteins in filamentous fungi. Fungal Genet Biol 70: 33–41.

Peyraud, R., Mbengue, M., Barbacci, A., Raffaele, S. (2019). Intercellular cooperation in a fungal plant pathogen facilitates host colonization. Proc. Natl. Acad. Sci. U S A. 116(8):3193-3201

Pieuchot, L., Lai, J., Loh, R.A., Leong, F.Y., Chiam, K.H., Stajich, J., Jedd, G. (2015) Cellular Subcompartments through Cytoplasmic Streaming. Dev. Cell. 34(4):410-20

Piovesan A., Caracausi M., Ricci M., Strippoli P., Vitale L., Pelleri M.C. (2015). Identification of minimal eukaryotic introns through GeneBase, a user-friendly tool for parsing the NCBI Gene databank. DNA Res 22: 495–503.

Pollard T.D. (2010). Mechanics of cytokinesis in eukaryotes. Curr Opin Cell Biol 22: 50–56. Proctor S.A., Minc N., Boudaoud A., Chang F. (2012). Contributions of turgor pressure, the contractile ring, and septum assembly on forces in cytokinesis in fission yeast. Curr Biol 22: 1601–1608.

Puszkin, E. G. and Raghuraman, V. (1985) Catalytic properties of a calmodulin regulated transglutaminase from human platelet and chicken gizzard. J. Biol. Chem. 260: 16012-16020

Ram, A.F & Klis FM. (2006). Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat. Protoc. 1(5):2253-6.

Rasmussen, C.G & Glass, N. L. (2007). Localization of RHO-4 Indicates Differential Regulation of Conidial versus Vegetative Septation in the Filamentous Fungus Neurospora crassa. Eukaryot Cell 6(7):1097-107

Renshaw, H., Vargas-Muñiz, J.M., Juvvadi, P.R., Richards, A.D., Waitt, G., Soderblom, E.J., Moseley, M.A., Steinbach, W.J. (2018). The tail domain of the Aspergillus fumigatus class V myosin MyoE orchestrates septal localization and hyphal growth. J. Cell Sci. 7;131(3). pii: jcs205955

Riquelme M., Aguirre J., Bartnicki-García S., Braus G.H., Feldbrügge M., Fleig U., Hansberg W., HerreraEstrella A., Kämper J., Kück U., Mouriño-Pérez R.R., Takeshita N., Fischer R. (2018). Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol Mol Biol Rev 82: e00068-17.

Saad, S., Cereghetti, G., Feng, Y., Picotti, P., Peter, M., Dechant, R. (2017). Reversible protein aggregation is a protective mechanism to ensure cell cycle restart after stress. Nat Cell Biol 19(10):1202-1213

Sager, R& Lee, J.Y. (2014). Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. J. Exp. Bot.65(22):6337-58

Segawa ,Y., Suga, H., Iwabe, N., Oneyama, C., Akagi, T., Miyata, T., Okada, M. (2006) Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals.Proc. Natl. Acad. Sci. U S A.103(32):12021-6

Seiler S., Justa-Schuch D. (2010). Conserved components, but distinct mechanisms for the placement and assembly of the cell division machinery in unicellular and filamentous ascomycetes. Mol Microbiol 78: 1058–1076.

Sharpless K.E., Harris S.D. (2002). Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 13: 469–479.

Shatkin, A.J., Tatum, E.L. (1959). Electron microscopy of Neurospora crassa mycelia. J. Biophys. Biochem. Cytol. 6:423-6.

Shen K.F., Osmani A.H., Govindaraghavan M., Osmani S.A. (2014). Mitotic regulation of fungal cell-to-cell connectivity through septal pores involves the NIMA kinase.Mol Biol Cell 25: 763–775.

Si H., Justa-Schuch D., Seiler S., Harris S.D. (2010). Regulation of septum formation by the Bud3–Rho4 GTPase module in Aspergillus nidulans. Genetics 185: 165–176.

Si, H., Rittenour, W.R., Xu, K., Nicksarlian, M., Calvo, A.M., Harris, S.D. (2012). Morphogenetic and developmental functions of the Aspergillus nidulans homologues of the yeast bud site selection proteins Bud4 and Axl2. Mol. Microbiol. 85(2):252-70

Siegel, M., Strnad, P., Watts, R.E., Choi, K., Jabri, B., Omary, M.B., Khosla, C. (2008). Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One 3(3):e1861.

Singh, R. N. and Mehta, K. (1994) Purifcation and characterisation of a novel transglutaminase from flarial nematode Brugia Malayi. Eur. J. Biochem. 225; 625-634

Smith T.C., Fridy P.C., Li Y., Basil S., Arjun S., Friesen R.M., Leszyk J., Chait B.T., Rout M.P., Luna E.J. (2013). Supervillin binding to myosin II and synergism with anillin are required for cytokinesis. Mol Biol Cell 24: 3603–3619.

Smith T.C., Fang Z., Luna E.J. (2010). Novel interactors and a role for supervillin in early cytokinesis. Cytoskeleton (Hoboken) 67: 346–364. Soundararajan, S., Jedd, G., Li, X., Ramos-Pamploña, M., Chua, N.H., Naqvi, N.I. (2004). Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16(6):1564-74

Staab, J.F., Bahn, Y.S., Tai, C.H., Cook, P.F., Sundstrom, P. (2004). Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J. Biol. Chem. 279(39):40737-47

Steinberg, G., Schuster, M., Hacker, C., Kilaru, S., Correia, A. (2017). ATP prevents Woronin bodies from sealing septal pores in unwounded cells of the fungus Zymoseptoria tritici. Cell Microbiol. 19(11).

Tada S., Gomi K., Kitamoto K., Takahashi K., Tamura G., Hara S. (1991). Construction of a fusion gene comprising the Taka-amylase A promoter and the Escherichia coli β-glucuronidase gene and analysis of its expression in Aspergillus oryzae. Mol Gen Genet 229: 301–306.

Taheri-Talesh N, Xiong Y, Oakley BR. (2012). The Functions of Myosin II and Myosin V Homologs in Tip Growth and Septation in Aspergillus nidulans. PLoS One 7:e31218

Taheri-Talesh N., Horio T., Araujo-Bazán L., Dou X., Espeso E.A., Peñalva M.A., Osmani S.A., Oakley B.R. (2008). The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19: 1439–1449.

Takeshita N., Evangelinos M., Zhou L., Serizawa T., Somera-Fajardo R.A., Lu L., Takaya N., Nienhaus G.U, Fischer R. (2017). Pulses of Ca2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proc Natl Acad Sci U S A 114: 5701–5706.

Takeshita N., Ohta A., Horiuchi H. (2005). CsmA, a Class V Chitin Synthase with a Myosin Motorlike Domain, Is Localized through Direct Interaction with the Actin Cytoskeleton in Aspergillus nidulans. Mol Biol Cell 16: 1961–1970.Tolliday N., Pitcher M., Li R. (2003). Direct evidence for a critical role of myosin II in budding yeast cytokinesis and the evolvability of new cytokinetic mechanisms in the absence of Myosin II. Mol Biol Cell 14: 798–809.

Takeshita, N. (2016). Coordinated process of polarized growth in filamentous fungi. Biosci. Biotechnol. Biochem. 80(9):1693-9

Torralba S., Raudaskoski M., Pedregosa A.M., Laborda F. (1998). Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology 144: 45–53.

Trinci, A.P., Collinge. A.J. (1973) Structure and plugging of septa of wild type and spreading colonial mutants of Neurospora crassa. Arch. Mikrobiol. 91(4):355-64.

Tsukasaki, W., Saeki, K., Katayama, T., Maruyama, J., Kitamoto, K. (2016). Molecular dissection of SO (SOFT) protein in stress-induced aggregation and cell-to-cell interactivefunctions in filamentous fungal multicellularity. Fungal Biol. 120(5):775-82

Tucholski, J & Johnson, G.V. (2002). Tissue transglutaminase differentially modulates apoptosis in a stimulidependent manner. J Neurochem. 81(4):780-91.

Tucholski, J., Lesor, M., Johnson, G.V. (2001).

Tissue transglutaminase is essential for neurite outgrowth in human neuroblastoma SH-SY5Y cells.

Ueki, S&Citovsky, V. (2014). Plasmodesmata-associated proteins: can we see the whole elephant?.Plant Signal Behav. 9(2):e27899

van Peer, A.F., Wang, F., van Driel, K.G., de Jong, J.F., van Donselaar, E.G., Müller, W.H., Boekhout, T., Lugones, L.G., Wösten, H.A. (2010). septal pore cap is an organelle that functions in vegetative growth and mushroom formation of the wood-rot fungus Schizophyllum commune. Environ. Microbiol. 12(4):833-44

Wang, J.Y., Li, L., Chai, R.Y., Qiu, H.P., Zhang, Z., Wang, Y.L., Liu, X.H., Lin, F.C., Sun, G.C. (2019). Pex13 and Pex14, the key components of the peroxisomal docking complex, are required for peroxisome formation, host infection and pathogenicity-related morphogenesis in Magnaporthe oryzae. Virulence 10(1):292-314

Weids, A.J., Ibstedt, S., Tamás, M.J., Grant, C.M. (2016) Distinct stress conditions result in aggregation of proteins with similar properties. Sci. Rep. 6:24554.

Weids, A.J., Ibstedt, S., Tamás, M.J., Grant, C.M. (2016). Distinct stress conditions result in aggregation of proteins with similar properties. Sci. Rep. 6:24554.

Weiss, G.L., Kieninger, A.K., Maldener, I., Forchhammer, K., Pilhofer, M.(2019). Structure and Function of a Bacterial Gap Junction Analog. Cell 178(2):374-384

Westfall, P.J & Momany, M. (2002) Aspergillus nidulans septin aspb plays pre- and postmitotic roles in septum, branch, and conidiophore development. Mol. Biol. Cell. 13(1):110-8.

Willet A.H., McDonald N.A., Gould K.L. (2015). Regulation of contractile ring formation and septation in Schizosaccharomyces pombe. Curr Opin Microbiol 28: 46–52.

Wolkow T.D., Harris S.D., Hamer J.E. (1996). Cytokinesis in Aspergillus nidulans is controlled by cell size, nuclear positioning and mitosis. J Cell Sci 109: 2179–2188.

Wolkow T.D., Harris S.D., Hamer J.E. (1996). Cytokinesis in Aspergillus nidulans is controlled by cell size, nuclear positioning and mitosis. J Cell Sci 109: 2179–2188.

Wood V1 , Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O'Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Düsterhöft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sánchez M, del Rey F, Benito J, Domínguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P. The genome sequence of Schizosaccharomyces pombe. (2002). Nature 415(6874):871-80.

Yasueda, H., Kumazawa, Y. and Motoki, M. (1994) Purifcation and characterization of a tissue-type transglutaminase from red sea bream (Pagrus major ). Biosci. Biotechnol. Biochem. 58: 2041-2045

Yee, V.C., Pedersen, L.C., Le, Trong, I., Bishop, P.D., Stenkamp, R.E., Teller, D.C. (1994). Three-dimensional structure of a transglutaminase: Human blood coagulation factor XIII. Proc. Natl. Acad. Sci. U S A. 91(15):7296-300

Yu, Y.J., Wu, S.C., Chan, H.H., Chen, Y.C., Chen, Z.Y., Yang, M.T (2008) Overproduction of soluble recombinant transglutaminase from Streptomyces netropsis in Escherichia coli. Appl. Microbiol. Biotechnol. 81:523–532

Yuan, P., Jedd, G., Kumaran, D., Swaminathan, S., Shio, H., Hewitt, D., Chua, N.H., Swaminathan, K. (2003). A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat. Struct. Biol. 10(4):264-70.

Zhang, J. and Masui, Y. (1997) Role of amphibian egg transglutaminase in the development of secondary cytostatic factor in vitro. Mol. Reprod. Dev. 47: 302-311

Zhang, L., Zhang, D., Chen, Y., Ye, W., Lin, Q., Lu, G., Ebbole, D.J., Olsson, S., Wang, Z. (2019). Magnaporthe oryzae CK2 Accumulates in Nuclei, Nucleoli, at Septal Pores and Forms a Large Ring Structure in Appressoria, and Is Involved in Rice Blast Pathogenesis. Front. Cell. Infect. Microbiol. 9:113

参考文献をもっと見る