リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「シングルリファレンスHPLC法の開発研究:既存添加物・健康食品の品質分析への応用」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

シングルリファレンスHPLC法の開発研究:既存添加物・健康食品の品質分析への応用

髙橋 未来 立命館大学 DOI:info:doi/10.34382/00014810

2021.06.23

概要

既存添加物は、古くから日本で使用されている天然添加物であり、健康増進作用を持つ様々な成分が含まれている。そのため、これらの成分は既存添加物だけでなく、医薬品、健康食品やサプリメントとして広く利用されている。既存添加物に含まれる主成分を定量評価するために、高速液体クロマトグラフィー(HPLC)を用いた公定法では、信頼性のある高純度な標準品が不可欠である。しかしながら、高純度かつ低価格な標準品を、試薬メーカーから入手することは困難である。そこで、本研究では、既存添加物の主成分を正確に定量するために、相対モル感度(RMS)によるシングルリファレンス(SR)を用いた HPLC 分析法の開発をすることとした。

まず、内部標準として用いる SR を流通品から選択(または合成デザイン)し、定量 NMR法( qNMR)により絶対評価をする。その後、HPLC を用いて絶対検量線を作成し、SR に対する分析対象物質の傾きの比により RMS を算出する。それにより、分析対象物質の RMS に基づいて、HPLC クロマトグラム上のピーク面積比により、間接的に分析対象物質を定量することができる。本研究では、ベニコウジ黄色素中のキサントモナシン A および B(第 1 章)、ゴ マ油不けん化物中のセサミン、セサモリン、エピセサミンおよびセサモールのゴマリグナン類(第2 章)、チャ抽出物中のカテキン、エピカテキン、ガロカテキン、エピガロカテキン、カテキンガレート、エピカテキンガレート、ガロカテキンガレートおよびエピガロカテキンガレートのカテキン類(第 3 章)に対する SR-HPLC 定量法を開発し、既存添加物だけでなく食品や健康食品を用いて定量的な検討を試みた。

その結果、RMS に基づいた SR-HPLC 定量法により求めた定量値は、従来の絶対検量線と同等の値を示した。さらに、異なる分析条件(分析カラムおよび移動相)においても、その再現性や精度は良好であった。以上より、本手法は分析対象物質の標準品を入手不可能な場合においても、簡便かつ信頼性の高い定量法であるため、既存添加物の試験法として期待できるといえる。

参考文献

1)9th Edition Japan’s Specifications and Standards for Food Additives Published by The Ministry of Health and Welfare (2017) [http://www.mhlw.go.jp/stf/shingi2/0000135214.html]

2)N. Sugimoto, K. Sato, T. Yamazaki, K. Tanamoto, Analysis of constituents in Jamaica quassia extract, a natural bittering agent. Food Hyg. Saf. Sci.(2003)328-331

3)F.E. Lancaster, J.F.: Lawrence, Determination of annatto in high-fat dairy products, margarine and hard candy by solvent extraction followed by high-performance liquid chromatography. Food Addit. 12(1995)9-19

4)T. Iso, N. Sugimoto, K. Sato, T. Yamazaki, K. Ishibashi, S. Shiomi, K. Tonamoto,Identification test of aloe extract from Aloe arborescens, a natural thickening stabilizer. J. Food Chem. 12(2005)23-27

5)D.A. Foley, J. Wang, B. Maranzano, M.T. Zell, B.L. Marquez, Y. Xiang, G.L. Reid,Online NMR and HPLC as a reaction monitoring platform for pharmaceutical process development. Anal. Chem. 85 (2013) 8928-8932.

6) M. Timmers, S. Urban, On-line (HPLC-NMR) and off-line phytochemical profiling of the Australian plant, Lasiopetalum macrophyllum. Nat. Prod. Commun. 7 (2012) 551-560.

7 ) G.K. Webster, I. Marsden, C.A. Pommerening, C.M. Tyrakowski, B. Tobias,Determination of relative response factors for chromatographic investigations using NMR spectrometry. J. Pharm. Biomed. Anal. 49 (2009) 1261-1265.

8) K. Karthikeyan, G.T. Arularasu, V. Murali, K.C. Pillai, Identification, isolation,characterization and response factor determination of process-related impurity in meprobamate drug substance. J. Pharm. Biomed. Anal. 54 (2011) 208-212.

9)Y. Nishizaki, A. Tada, K. Ishizuki, Y. Ito, A. Onoda, N. Sugimoto, H. Akiyama,Development of a novel method for quantifying quassin and neoquassin in Jamaica quassia extracts using the molar absorption coefficient ratio. J. Food Hyg. Soc. Japan 56 (2015) 185-193.

10)Y. Nishizaki, N. Sato-Masumoto, A. Yokota, T. Mikawa, K. Nakashima, T. Yamazaki,M. Kuroe, M. Numata, T. Ihara, Y. Ito, N. Sugimoto, K Sato, HPLC/PDA determination of carminic acid and 4-aminocarminic acid using relative molar sensitivities with respect to caffeine. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 35 (2018) 838-847.

11) Y. Kitamaki, N. Saito, T. Yamazaki, S. Otsuka, S. Nakamura, Y. Nishizaki, N.Sugimoto, M. Numata, T. Ihara, Determination of PAHs in Solution with a Single Reference Standard by a Combination of 1H Quantitative NMR Spectroscopy and Chromatography. Anal. Chem. 89 (2017) 6963-6968.

12)S. Kumasaki, K Nakanishi, E Nishikawa, Ohashi M., Structure of monascorubin.Tetrahedron, 18(1962)1171-1184

13)S. Iwaxa, N. Harada, T. Watanabe, N. Kotokawa, A. Yamamoto, H Hayashi, S.A. Kobayashi, Inhibitory effects of food-coloring agents derived from Monascus on the mutagenicity of heterocyclic amines. J. Agric. Food Chem. 45(1997)3980-3984

14)T. Akihisa, H. Tokuda, M. Kiyota, K Yasukawa, N. Sakamoto, T. Suzuki, J. Takayasu,H Nishino, Anti-tumor-iniating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice(red-mold rice). Chem. Biodivers. 2(2005)1305-1309

15)N.W. Su, Y. L. Lee, M. H. Lee, C. Y. Ho, Ankaflavin from Monascus-fermented red ruce exhibits selective cytotoxic effect and induces cell death on Hep G2cells. J. Agric. Food Chem., 53(2005)1949-1954

16)C.L. Lee, J.J. Wang, S.l. Kuo, T.M. Pan, Monascus fermentation of dioscorea froincreasing the production of cholesterol-lowering agent-monacolin K and antiflamentation agent-monascin. Appl. Microbiol. Biotechunol. 72(2006)1254- 1262

17) D. Wild, G. Tóth, H.U. Humpf, New monascus metabolite isolated from red yeast rice (angkak, red koji). J. Agric. Food Chem. 50 (2002) 3999-4002.

18)H. Jung, C. Kim, K. Kim, C.S. Shin, Color characteristics of monascus pigments derived by fermentation with various amino acids. J. Agric. Food Chem. 51 (2003) 1302-1306.

19 ) S. Campoy, A. Rumbero, J.F. Martín, P. Liras, Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Appl. Microbiol. Biotechnol. 70 (2006) 488-496.

20) K. Shi, G. Chen, M. Pistolozzi, F. Xia, Z. Wu, Improved analysis of Monascus pigments based on their pH-sensitive UV-Vis absorption and reactivity properties. Food Addit. Contam. Part A 33(2016)1396-1401

21)T. Watanabe, S. Yamamoto, S. Nagai, S. Terabe, Separation and determination of monascus yellow pigments for food my micellar electrokinetic chromatography. Anal. Sci. 13(1993)571-575

22) H. Jung, C. Kim, K. Kim, C.S. Shin, Color characteristics of monascus pigments derived by fermentation with various amino acids. J. Agric. Food Chem. 51(2003) 1302-1306.

23 ) C. Chen, W.R. Folk, R. Lazo-Portugal, T.M. Finn, M. Knight, Isolation of sutherlandins A, B, C and D from Sutherlandia frutescens (L.) R. Br. by counter - current chromatography using spiral tubing support rotors. J. Chromatogr. A 1508 (2017) 7-15.

24)Y. Li, L. Li, Y. Cui, S. Zhang, B. Sun, Separation and purification of polyphenols from red wine extracts using high speed counter current chromatography. J.Chromatogr. B 1054 (2017) 105-113.

25)M. Takahashi, Y. Nishizaki, N. Sugimoto, H. Takeuchi, K. Nakagawa, H. Akiyama,K. Sato, K. Inoue, Determination and purification of sesamin and sesamolin in sesame seed oil unsaponified matter using reversed-phase liquid chromatography coupled with photodiode array and tandem mass spectrometry and high-speed countercurrent chromatography. J. Sep. Sci. 39 (2016) 3898-3905.

26) K. Inoue, C. Tanada, H. Nishikawa, S. Matsuda, A. Tada, Y. Ito, J.Z. Min, K.Todoroki, N. Sugimoto, T. Toyo'oka, H. Akiyama, Evaluation of gardenia yellow using crocetin from alkaline hydrolysis based on ultra high performance liquid chromatography and high-speed countercurrent chromatography. J. Sep. Sci. 37 (2014) 3619-3624.

27 ) K. Inoue, E. Baba, T. Hino, H. Oka, A strategy for high-speed countercurrent chromatography purification of specific antioxidants from natural products based on on-line HPLC method with radical scavenging assay. Food Chem. 134 (2012) 2276- 2282.

28)K. Inoue, C. Nomura, Y. Mizuno, Y. Yoshimi, K. Tsutsumiuchi, T. Hino, Separation of Major Safflowers from Carthamus Yellow using High ‐ Speed Countercurrent Chromatography, J. Liq. Chromatogr. Relat. Technol. 31(2008)1047-1059

29) K. Inoue, Y. Ito, Y. Hattori, K. Tsutsumiuchi, S. Ito, T. Hino, H. Oka, Efficient purification of xanthomonasin A and B from Monascus yellow colorant by high- speed countercurrent chromatography. J. Food Chem. Safety 17 (2010) 185-191.

30) M. Takahashi, Y. Nishizaki, N. Sugimoto, K. Sato, K. Inoue, Single reference quantitative analysis of xanthomonasin A and B in Monascus yello colorant using high-performance liquid chromatography with relative molar sensitivity based on high-speed countercurrent chromatography. J. Chromatogr. A. 1555 (2018) 45-52.

31)Y. Wan, H. Li, G. Fu, X Chen, F. Chen, M. Xie, The relationship of antioxidant components and antioxidant activity of sesame seed oil, J. Sci. Food Agric. 95(2015) 2571-2578

32 ) C. Mahendra Kumar, S.A. Singh, Bioactive lignans from sesame (Sesamum indicum L.): evaluation of their antioxidant and antibacterial effects for food applications. J. Food Sci. Technol. 52(2015)2934-2941.

33)S.S. Umesha, K.A. Naidu, Antioxidants and antioxidant enzymes status of rats fed on n‐ 3 PUFA rich Garden cress (Lepidium Sativum L) seed oil and its blended oils. J. Food Sci. Technol. 52(2015) 1993-2002

34)S. Ben Othman, N. Katsuno, Y. Kanamaru, T. Yabe, Water‐soluble extracts from defatted sesame seed flour show antioxidant activity in vitro. Food Chem. 15(2015) 306-314.

35)Y. Wan, H. Li, G. Fu, X. Chen, F. Chen, M. Xie, The relationship of antioxidant components and antioxidant activity of sesame seed oil. J. Sci. Food Agric. 95(2015) 2571-2578.

36)H.M. Wang, K.C. Cheng, C.J. Lin, S.W. Hsu, W.C. Fang, T.F. Hsu, C.C. Chiu, H.W.Chang, C.H. Hsu, A.Y. Lee, Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci. 101(2010)2612-220.

37)P. Kong, G. Chen, A. Jiang, Y. Wang, C. Song, J. Zhuang, C. Xi, G. Wang, Y. Ji, J.Yan, Sesamin inhibits IL-1β-stimulated inflammatory response in human osteoarthritis chondrocytes by activating Nrf2 signaling pathway. Oncotarget. 13(2016)83720-83726.

38)H. Dou, S. Yang, Y. Hu, D. Xu, L. Liu, X. Li, Sesamin induces ER st ress-mediated apoptosis and activates autophagy in cervical cancer cells. Life Sci. (2018) doi: 10.1016/j.lfs.2018.03.003.

39)J.H. Kim, J.K. Lee, Sesamolin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt's lymphoma cells. Int. Immunopharmacol. 28(2015)977-984.

40)L. Panzella, T. Eidenberger, A. Napolitano, Anti-Amyloid Aggregation Activity of Black Sesame Pigment: Toward a Novel Alzheimer's Disease Preventive Agent.Molecules. (2018) doi: 10.3390/molecules23030676.

41)E. Hsu, S. Hsu, Anti-inflammatory and Antioxidant Effects of Sesame Oil on Atherosclerosis: A Descriptive Literature Review. Cureus. 9(2017) e1438.

42)S. Periasamy, C.T. Liu, S.P. Chien, Y.C. Chen, M.Y. Liu, Daily sesame oil supplementation mitigates ketoconazole-induced oxidative stress-mediated apoptosis and hepatic injury. J. Nutr. Biochem. 37(2016)67-75.

43)N. Rangkadilok, N. Pholphana, C. Mahidol, W. Wongyai, K. Saengsooksree, S.Nookabkaew, Variation of sesamin, sesamolin and toco ‐ pherols in sesame (Sesamum indicum L.) seeds and oil products in Thailand. Food Chem. 122(2010) 724-730.

44)W. Wu, The contents of lignans in commercial sesame oils of Taiwan and their changes during heating. Food Chem. 104(2007)341-344.

45)G.S. Hemalatha, Ghafoorunissa; Lignans and tocopherols in Indian sesame cultivars. J. Am. Oil. Chem. Soc. 81(2004)467-470.

46)Z. Feng, K. Gu, Composition, structure and physiological function of lignans in sesame seed. China Oils Fats 29(2004)56-59.

47)T. Tashiro, Y. Fukuda, T. Osawa, M. Namiki, Oil and minor components of sesame (Sesamum indicum L) strains. J. Am. Oil. Chem. Soc. 67(1990)508-511.

48)J. Wu, The introduction of natural antioxidants in sesame. Food Ind. 4(2001)11- 15.

49)D. Sukumar, R. Arimboor, C. Arumughan, HPTLC fingerprinting and quantification of lignans as markers in sesame oil and its polyherbal formulations. J. Pharm. Biomed. Anal. 47(2008)795-801.

50)K. Yamaguchi, S. Kurata, Accelerated separation of GC-amenable lipid classes in plant oils by countercurrent chromatography in the co-current mode. Bunseki Kagaku 54(2005)1091-1100.

51)P. Górnaś, A. Siger, I. Pugajeva, D. Segliņa, Sesamin and sesamolin as unexpected contaminants in various cold-pressed plant oils: NP-HPLC/FLD/DAD and RP- UPLC-ESI/MS(n) study. Food Addit. Contam. 31(2014)567-573.

52)A.S. Bhatnagar, J. Hemavathy, A.G. Gopala Krishna, Development of a rapid method for determination of lignans content in sesame oil. J. Food Sci. Technol. 52(2015) 521-527.

53)H.L. Zhang, X.Q. Gan, Q.F. Fan, J.J. Yang, P. Zhang, H.B. Hu, Q.S. Song, Chemical constituents and anti-inflammatory activities of Maqian (Zanthoxylum myriacanthum var. pubescens) bark extracts. Sci. Rep. 7(2017)45805.

54)R. Amarowicz, F. Shahidi, R.B. Pegg, Application of semipreparative RP-18 HPLC for the purification of sesamin and sesamolin. J. Food Lipids 8(2001)85-94.

55)J.C. Zhou, D.W. Feng, G.S. Zheng, Extraction of sesamin from sesame oil using macroporous resin. J. Food Eng. 100(2010)289-293.

56)M.V. Reshma, C. Balachandran, C. Arumughan, A. Sunderasan, D. Sukumaran, S. Thomas, S.S. Saritha, Extraction, separation and characterization of sesame oil lignan for nutraceutical applications. Food Chem. 120(2010)1041-1046.

57)X. Wang, Y. Lin, Y. Geng, F. Li, D. Wang, Preparative separation and purification of sesamin and sesamolin from sesame seeds by high-speed counter-current chromatography. Cereal Chem. 86(2009)23-25.

58)M. Takahashi, Y. Nishizaki, K. Morimoto, N. Sugimoto, K. Sato, K. Inoue, Designof synthetic single reference standards for the simultaneous determination of sesamin, sesamolin, episesamin, and sesamol by HPLC using relative molar sensitivity. J. Sep. Sci. 1(2008)1-8.

59)M. Pervin, K. Unno, T. Ohishi, H. Tanabe, N. Miyoshi, Y. Nakamura, Beneficialeffects of green tea catechins on neurodegenerative diseases. Molecules 23(2018) E1297

60)H.L. Schimidt, A. Garcia, A. Martins, P.B. Mellocarpes, F.P. Carpes, Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Res. Int. 100(2017)442-448.

61)V.S. Rogovskii, S.V. Popov, N.V. Sturov, N.L. Shimanovskii, The possibility ofpreventive and therapeutic use of green tea catechins in prostate cancer. Anticancer Agents Med. Chem. 9(2019)1223-1231.

62)A.W. El-Hattab, A.M. Zarante, M. Almannai, F. Scaglia, Therapies for mitochondrial diseases and current clinical trials. Mol. Gene.t Metab. 122(1998)1-9.

63)D.R. Mangels, E.R. Mohler, Catechins as potential mediators of cardiovascular health.Arterioscler. Thromb. Vasc. Biol. 37(2017)757-763.

64)M.H. Farzaei, R. Bahramsoltani, Z. Abbasabadi, N. Braidy, S.M. Nabavi, Role of green tea catechins in prevention of age-related cognitive decline: pharmacological targets and clinical perspective. J. Cell Physiol. 234(2019)2447-2459.

65)J.J. Dalluge, B.C. Nelson, Determination of tea catechins. J. Chromatogr. A 881(1998)411-424 .

66)T. Goto, Y. Yoshida, M. Kiso, H. Nagashima, Simultaneous analysis of individual catechins and caffeine in green tea. J. Chromatogr. A 749(1996)295-299.

67)J.J. Dalluge, B.C. Nelson, J.B. Thomas, L.C. Sander, Selection of column and gradient elution system for the separation of catechins in green tea using high- performance liquid chromatography. J. Chromatogr. A 793(1998)265-274.

68)P. Šilarová, L. Česlová, M. Meloun, Fast gradient HPLC/MS separation of phenolics in green tea to monitor their degradation. Food Chem. 237(2017)471-480.

69)C. Qi, G. Tianyang, Y. Jian, L. Renyi, W. Peng, W. Qiong, J. Shaotong, D. Yiyang, Microwave-assisted extraction combined with ultra-high-performance liquid chromatography and quadrupole/q-exactive high-resolution mass spectrometry for the determination of main flavor substances in green tea. J. AOAC. Int. 103(2020) 428-432.

参考文献をもっと見る