リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cosmological consequences of quantum processes in strong gravity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cosmological consequences of quantum processes in strong gravity

大下, 翔誉 東京大学 DOI:10.15083/0002001847

2021.10.04

概要

In the modern cosmology, there are several problems and interesting predictions involving strong gravity such as the initial cosmological singularity problem, problem of initial conditions for cosmic inflation, consistency of the generalized second law of thermodynamics, black hole information loss paradox, and metastability of the Higgs vacuum. It is one of the priorities of modern cosmology to provide plausible cosmological scenarios which can be resolutions to these problems or are consistent with some theoretical or experimental predictions. In this dissertation, we approach these problems and provide some plausible scenarios regarding the beginning and fate of the Universe by taking into account quantum effects in strong gravity.

Cosmic inflation is a standard scenario describing the early universe, which solves several fine- tuning problems, and is consistent with the observational data of Cosmic Microwave Background radiation. However, it has been expected that in order for inflation to start, homogeneity of the Universe is necessary to some extent. The problem of initial conditions for inflation is to assert how inflation began at the early stage of the Universe without assuming homogeneity of space from the outset. Our scenario implies that the quantum tunneling effect of the initial inhomogeneous space could lead to the birth of baby universes that accommodate inflating domains. This can be one of the possible scenarios to solve the problem of initial conditions for inflation. We also investigate the thermodynamical aspect of inflation, especially, the consistency of the generalized second law of thermodynamics during inflation.

After the end of inflation, the Universe is thermalized since the energy of inflation is converted to thermal radiation and the large scale structure eventually forms. In the present Universe, black holes, originating from gravitational collapses of matter, are ubiquitous. The evaporation process of black holes is still controversial due to the black hole information loss paradox. In particular, the firewall argument in the paradox perhaps requires a drastic modification of the picture of the multiverse and eternal inflation. We then provide a reasonable reason for rejecting the firewall argument by focusing on the gravitational decoherence inside a black hole.

Regarding the future of the Universe, a number of interesting scenarios have been proposed so far. For example, the metastability of the Higgs vacuum may lead to a catastrophic scenario of the Universe. This is because the metastability implies that the Higgs vacuum we live in until now might be metastable and the Universe could be filled by vacuum bubbles including large and negative vacuum energy because of the first order phase transition of the Higgs vacuum. Furthermore, it has been proposed that “impurities” in the Universe such as black holes would be catalysts for the vacuum decays of the Higgs field. We then investigate horizonless compact objects as the catalysts for the vacuum decays.

We also discuss another interesting scenario regarding the fate of the Universe, and this may give us a deeper insight into the beginning of the Universe as well. The original initial singularity problem is an implication from the general relativity, which states that as long as a plausible energy condition (strong energy condition) is satisfied, the initial singularity is unavoidable at the finite past of the Universe. However, our scenario tells us that the initial singularity or the real beginning of the Universe are no longer necessary and the Universe can be eternal to past. Evaporating black holes in the far future of the Universe emit high-temperature Hawking radiation. In our scenario, the energy of Hawking radiation around the mini black hole is converted to vacuum energy due to the symmetry restoration of a related quantum field, and then the symmetry restored region eventually start to inflate after the quantum tunneling process. This implies that our Universe may have been created from a black hole in the previous generation of the Universe, and in this sense, the Universe can be eternal to past.

参考文献

[1] K. Sato. First Order Phase Transition of a Vacuum and Expansion of the Universe. Mon. Not. Roy. Astron. Soc., 195:467–479, 1981.

[2] Alan H. Guth. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev., D23:347–356, 1981. [Adv. Ser. Astrophys. Cosmol.3,139(1987)].

[3] G. Hinshaw et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observa- tions: Cosmological Parameter Results. Astrophys. J. Suppl., 208:19, 2013.

[4] Y. Akrami et al. Planck 2018 results. X. Constraints on inflation. 2018.

[5] Alexander Vilenkin. Creation of Universes from Nothing. Phys. Lett., 117B:25–28, 1982.

[6] Alexander Vilenkin. Did the universe have a beginning? Phys. Rev., D46:2355–2361, 1992.

[7] Arvind Borde and Alexander Vilenkin. Eternal inflation and the initial singularity. Phys. Rev. Lett., 72:3305–3309, 1994.

[8] Arvind Borde and Alexander Vilenkin. Singularities in inflationary cosmology: A Review. Int. J. Mod. Phys., D5:813–824, 1996.

[9] Arvind Borde, Alan H. Guth, and Alexander Vilenkin. Inflationary space-times are in- completein past directions. Phys. Rev. Lett., 90:151301, 2003.

[10] Andreas Albrecht, Robert H. Brandenberger, and R. Matzner. Numerical Analysis of Inflation. Phys. Rev., D32:1280, 1985.

[11] Andreas Albrecht, Robert H. Brandenberger, and Richard Matzner. Inflation With Gen- eralized Initial Conditions. Phys. Rev., D35:429, 1987.

[12] H. Kurki-Suonio, R. A. Matzner, J. Centrella, and J. R. Wilson. Inflation From In- homogeneous Initial Data in a One-dimensional Back Reacting Cosmology. Phys. Rev., D35:435–448, 1987.

[13] Robert H. Brandenberger and Hume A. Feldman. Effects of Gravitational Perturbations on the Evolution of Scalar Fields in the Early Universe. Phys. Lett., B220:361–367, 1989.

[14] V. Muller, H. J. Schmidt, and Alexei A. Starobinsky. Power law inflation as an attractor solution for inhomogeneous cosmological models. Class. Quant. Grav., 7:1163–1168, 1990.

[15] Hume A. Feldman and Robert H. Brandenberger. Chaotic Inflation With Metric and Matter Perturbations. Phys. Lett., B227:359–366, 1989.

[16] Robert H. Brandenberger, Hume Feldman, and Jong Kung. Initial conditions for chaotic inflation. Phys. Scripta, T36:64–69, 1991.

[17] Dalia S. Goldwirth. On inhomogeneous initial conditions for inflation. Phys. Rev., D43:3204–3213, 1991.

[18] Robert H. Brandenberger and J. H. Kung. Chaotic Inflation as an Attractor in Initial Condition Space. Phys. Rev., D42:1008–1015, 1990.

[19] Dalia S. Goldwirth and Tsvi Piran. Initial conditions for inflation. Phys. Rept., 214:223– 291, 1992.

[20] P. Laguna, H. Kurki-Suonio, and R. A. Matzner. Inhomogeneous inflation: The Initial value problem. Phys. Rev., D44:3077–3086, 1991.

[21] Hannu Kurki-Suonio, Pablo Laguna, and Richard A. Matzner. Inhomogeneous inflation: Numerical evolution. Phys. Rev., D48:3611–3624, 1993.

[22] William E. East, Matthew Kleban, Andrei Linde, and Leonardo Senatore. Beginning inflation in an inhomogeneous universe. JCAP, 1609(09):010, 2016.

[23] J. D. Bekenstein. Black holes and the second law. Lett. Nuovo Cim., 4:737–740, 1972.

[24] Jacob D. Bekenstein. Black holes and entropy. Phys. Rev., D7:2333–2346, 1973.

[25] Jacob D. Bekenstein. Generalized second law of thermodynamics in black hole physics. Phys. Rev., D9:3292–3300, 1974.

[26] G. W. Gibbons and S. W. Hawking. Cosmological Event Horizons, Thermodynamics, and Particle Creation. Phys. Rev., D15:2738–2751, 1977.

[27] S. W. Hawking. Black hole explosions. Nature, 248:30–31, 1974.

[28] S. W. Hawking. Particle Creation by Black Holes. Commun. Math. Phys., 43:199–220, 1975. [,167(1975)].

[29] S. W. Hawking. Breakdown of Predictability in Gravitational Collapse. Phys. Rev., D14:2460–2473, 1976.

[30] Leonard Susskind, Larus Thorlacius, and John Uglum. The Stretched horizon and black hole complementarity. Phys. Rev., D48:3743–3761, 1993.

[31] Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully. Black Holes: Com- plementarity or Firewalls? JHEP, 02:062, 2013.

[32] S. W. Hawking and I. G. Moss. Supercooled Phase Transitions in the Very Early Universe. Phys. Lett., 110B:35–38, 1982. [Adv. Ser. Astrophys. Cosmol.3,154(1987)].

[33] Naritaka Oshita. Generalized second law of thermodynamics and cosmological decoher- ence. Phys. Rev., D97(2):023510, 2018.

[34] Naritaka Oshita and Jun’ichi Yokoyama. Entropic interpretation of the Hawking–Moss bounce. PTEP, 2016(5):053E02, 2016.

[35] Katsuhiko Sato, Hideo Kodama, Misao Sasaki, and Kei-ichi Maeda. Multiproduction of Universes by First Order Phase Transition of a Vacuum. Phys. Lett., 108B:103–107, 1982.

[36] Bernard J. Carr, editor. Universe or multiverse? 2007.

[37] Andrei D. Linde. Eternally Existing Selfreproducing Chaotic Inflationary Universe. Phys. Lett., B175:395–400, 1986.

[38] Naritaka Oshita. Resolution to the firewall paradox: The black hole information paradox and highly squeezed interior quantum fluctuations. Class. Quant. Grav., 34(19):195002, 2017.

[39] A. Vilenkin and E. P. S. Shellard. Cosmic Strings and Other Topological Defects. Cam- bridge University Press, 2000.

[40] Sidney R. Coleman. Q Balls. Nucl. Phys., B262:263, 1985. [Erratum: Nucl. Phys.B269,744(1986)].

[41] Alexander Kusenko and Mikhail E. Shaposhnikov. Supersymmetric Q balls as dark matter. Phys. Lett., B418:46–54, 1998.

[42] Kari Enqvist and John McDonald. Q balls and baryogenesis in the MSSM. Phys. Lett., B425:309–321, 1998.

[43] Kari Enqvist and John McDonald. B - ball baryogenesis and the baryon to dark matter ratio. Nucl. Phys., B538:321–350, 1999.

[44] S. Kasuya and M. Kawasaki. Q ball formation through Affleck-Dine mechanism. Phys. Rev., D61:041301, 2000.

[45] S. Kasuya and M. Kawasaki. Q Ball formation in the gravity mediated SUSY breaking scenario. Phys. Rev., D62:023512, 2000.

[46] S. Kasuya and M. Kawasaki. Q ball formation: Obstacle to Affleck-Dine baryogenesis in the gauge mediated SUSY breaking? Phys. Rev., D64:123515, 2001.

[47] Ki-Myeong Lee, Jaime A. Stein-Schabes, Richard Watkins, and Lawrence M. Widrow. Gauged q Balls. Phys. Rev., D39:1665, 1989.

[48] Shinta Kasuya, Masahiro Kawasaki, and Tsutomu T. Yanagida. IceCube potential for detecting Q-ball dark matter in gauge mediation. PTEP, 2015(5):053B02, 2015.

[49] Jeong-Pyong Hong, Masahiro Kawasaki, and Masaki Yamada. Charged Q-balls in gauge mediated SUSY breaking models. Phys. Rev., D92(6):063521, 2015.

[50] Remo Ruffini and Silvano Bonazzola. Systems of selfgravitating particles in general rela- tivity and the concept of an equation of state. Phys. Rev., 187:1767–1783, 1969.

[51] C. J. Hogan and M. J. Rees. AXION MINICLUSTERS. Phys. Lett., B205:228–230, 1988.

[52] Edward W. Kolb and Igor I. Tkachev. Axion miniclusters and Bose stars. Phys. Rev. Lett., 71:3051–3054, 1993.

[53] Edward Seidel and Wai-Mo Suen. Formation of solitonic stars through gravitational cool- ing. Phys. Rev. Lett., 72:2516–2519, 1994.

[54] Wayne Hu, Rennan Barkana, and Andrei Gruzinov. Cold and fuzzy dark matter. Phys. Rev. Lett., 85:1158–1161, 2000.

[55] F. Siddhartha Guzman and L. Arturo Urena-Lopez. Gravitational cooling of self- gravitating Bose-Condensates. Astrophys. J., 645:814–819, 2006.

[56] P. Sikivie and Q. Yang. Bose-Einstein Condensation of Dark Matter Axions. Phys. Rev. Lett., 103:111301, 2009.

[57] Alan H. Guth, Mark P. Hertzberg, and C. Prescod-Weinstein. Do Dark Matter Axions Form a Condensate with Long-Range Correlation? Phys. Rev., D92(10):103513, 2015.

[58] Joshua Eby, Peter Suranyi, Cenalo Vaz, and L. C. R. Wijewardhana. Axion Stars in the Infrared Limit. JHEP, 03:080, 2015. [Erratum: JHEP11,134(2016)].

[59] Eric Braaten, Abhishek Mohapatra, and Hong Zhang. Dense Axion Stars. Phys. Rev. Lett., 117(12):121801, 2016.

[60] Eric Braaten, Abhishek Mohapatra, and Hong Zhang. Nonrelativistic Effective Field Theory for Axions. Phys. Rev., D94(7):076004, 2016.

[61] Lam Hui, Jeremiah P. Ostriker, Scott Tremaine, and Edward Witten. Ultralight scalars as cosmological dark matter. Phys. Rev., D95(4):043541, 2017.

[62] Joshua Eby, Madelyn Leembruggen, Peter Suranyi, and L. C. R. Wijewardhana. Collapse of Axion Stars. JHEP, 12:066, 2016.

[63] Joshua Eby, Peter Suranyi, and L. C. R. Wijewardhana. Expansion in Higher Harmonics of Boson Stars using a Generalized Ruffini-Bonazzola Approach, Part 1: Bound States. JCAP, 1804(04):038, 2018.

[64] Joshua Eby, Kyohei Mukaida, Masahiro Takimoto, L. C. R. Wijewardhana, and Masaki Yamada. Classical Nonrelativistic Effective Field Theory and the Role of Gravitational Interactions. 2018.

[65] Naritaka Oshita, Masaki Yamada, and Masahide Yamaguchi. Compact objects as the catalysts for vacuum decays. arXiv: 1808.01382[gr-qc], 2018.

[66] Naritaka Oshita and Jun’ichi Yokoyama. Creation of an inflationary universe out of a black hole. Phys. Lett., B785:197–200, 2018.

[67] Arvind Borde. Geodesic focusing, energy conditions and singularities. Class. Quant. Grav., 4:343–356, 1987.

[68] Robert Brandenberger. Initial conditions for inflation — A short review. Int. J. Mod. Phys., D26(01):1740002, 2016.

[69] Andrei D. Linde. A New Inflationary Universe Scenario: A Possible Solution of the Hori- zon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett., 108B:389–393, 1982. [Adv. Ser. Astrophys. Cosmol.3,149(1987)].

[70] Andreas Albrecht and Paul J. Steinhardt. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett., 48:1220–1223, 1982. [Adv. Ser. Astrophys. Cosmol.3,158(1987)].

[71] Kei-ichi Maeda, Katsuhiko Sato, Misao Sasaki, and Hideo Kodama. Creation of De Sitter- schwarzschild Wormholes by a Cosmological First Order Phase Transition. Phys. Lett., 108B:98–102, 1982.

[72] Mukunda Aryal and Alexander Vilenkin. The Fractal Dimension of Inflationary Universe. Phys. Lett., B199:351–357, 1987.

[73] Tanmay Vachaspati and Mark Trodden. Causality and cosmic inflation. Phys. Rev., D61:023502, 1999.

[74] Lasha Berezhiani and Mark Trodden. How Likely are Constituent Quanta to Initiate Inflation? Phys. Lett., B749:425–430, 2015.

[75] S. W. Hawking and R. Penrose. The Singularities of gravitational collapse and cosmology. Proc. Roy. Soc. Lond., A314:529–548, 1970.

[76] P. C. W. Davies. Cosmological Horizons and the Generalized Second Law of Thermody- namics. Class. Quant. Grav., 4:L225, 1987.

[77] S. W. Hawking. Black holes in general relativity. Commun. Math. Phys., 25:152–166, 1972.

[78] Alexei A. Starobinsky and Jun’ichi Yokoyama. Equilibrium state of a selfinteracting scalar field in the De Sitter background. Phys. Rev., D50:6357–6368, 1994.

[79] Erick J. Weinberg. Hawking-Moss bounces and vacuum decay rates. Phys. Rev. Lett., 98:251303, 2007.

[80] Alexander Vilenkin. The Birth of Inflationary Universes. Phys. Rev., D27:2848, 1983.

[81] A. Fabbri and J. Navarro-Salas. Modeling black hole evaporation. 2005.

[82] Y. Aharonov, A. Casher, and S. Nussinov. The Unitarity Puzzle and Planck Mass Stable Particles. Phys. Lett., B191:51, 1987.

[83] Tom Banks, M. O’Loughlin, and Andrew Strominger. Black hole remnants and the infor- mation puzzle. Phys. Rev., D47:4476–4482, 1993.

[84] Steven B. Giddings. Quantum mechanics of black holes. In Proceedings, Summer School in High-energy physics and cosmology: Trieste, Italy, June 13-July 29, 1994, pages 0530–574, 1994.

[85] Ronald J. Adler, Pisin Chen, and David I. Santiago. The Generalized uncertainty principle and black hole remnants. Gen. Rel. Grav., 33:2101–2108, 2001.

[86] Leonard Susskind and Larus Thorlacius. Gedanken experiments involving black holes. Phys. Rev., D49:966–974, 1994.

[87] Don N. Page. Average entropy of a subsystem. Phys. Rev. Lett., 71:1291–1294, 1993.

[88] Don N. Page. Information in black hole radiation. Phys. Rev. Lett., 71:3743–3746, 1993.

[89] Don N. Page. Time Dependence of Hawking Radiation Entropy. JCAP, 1309:028, 2013.

[90] Sidney R. Coleman. The Fate of the False Vacuum. 1. Semiclassical Theory. Phys. Rev., D15:2929–2936, 1977. [Erratum: Phys. Rev.D16,1248(1977)].

[91] Curtis G. Callan, Jr. and Sidney R. Coleman. The Fate of the False Vacuum. 2. First Quantum Corrections. Phys. Rev., D16:1762–1768, 1977.

[92] Sidney R. Coleman and Frank De Luccia. Gravitational Effects on and of Vacuum Decay. Phys. Rev., D21:3305, 1980.

[93] Peter Brockway Arnold. Can the Electroweak Vacuum Be Unstable? Phys. Rev., D40:613, 1989.

[94] Guido Altarelli and G. Isidori. Lower limit on the Higgs mass in the standard model: An Update. Phys. Lett., B337:141–144, 1994.

[95] J. R. Espinosa and M. Quiros. Improved metastability bounds on the standard model Higgs mass. Phys. Lett., B353:257–266, 1995.

[96] J. A. Casas, J. R. Espinosa, and M. Quiros. Standard model stability bounds for new physics within LHC reach. Phys. Lett., B382:374–382, 1996.

[97] Thomas Hambye and Kurt Riesselmann. Matching conditions and Higgs mass upper bounds revisited. Phys. Rev., D55:7255–7262, 1997.

[98] Dario Buttazzo, Giuseppe Degrassi, Pier Paolo Giardino, Gian F. Giudice, Filippo Sala, Alberto Salvio, and Alessandro Strumia. Investigating the near-criticality of the Higgs boson. JHEP, 12:089, 2013.

[99] A. Gorsky, A. Mironov, A. Morozov, and T. N. Tomaras. Is the Standard Model saved asymptotically by conformal symmetry? J. Exp. Theor. Phys., 120(3):344–353, 2015. [Zh. Eksp. Teor. Fiz.147,399(2015)].

[100] Fedor Bezrukov and Mikhail Shaposhnikov. Why should we care about the top quark Yukawa coupling? J. Exp. Theor. Phys., 120:335–343, 2015. [Zh. Eksp. Teor. Fiz.147,389(2015)].

[101] John Ellis. Discrete Glimpses of the Physics Landscape after the Higgs Discovery. J. Phys. Conf. Ser., 631(1):012001, 2015.

[102] Kfir Blum, Raffaele Tito D’Agnolo, and JiJi Fan. Vacuum stability bounds on Higgs coupling deviations in the absence of new bosons. JHEP, 03:166, 2015.

[103] Gino Isidori, Giovanni Ridolfi, and Alessandro Strumia. On the metastability of the standard model vacuum. Nucl. Phys., B609:387–409, 2001.

[104] Manfred Lindner, Marc Sher, and Helmut W. Zaglauer. Probing Vacuum Stability Bounds at the Fermilab Collider. Phys. Lett., B228:139–143, 1989.

[105] Marc Sher. Electroweak Higgs Potentials and Vacuum Stability. Phys. Rept., 179:273–418, 1989.

[106] N. Cabibbo, L. Maiani, G. Parisi, and R. Petronzio. Bounds on the Fermions and Higgs Boson Masses in Grand Unified Theories. Nucl. Phys., B158:295–305, 1979.

[107] J. R. Espinosa, G. F. Giudice, and A. Riotto. Cosmological implications of the Higgs mass measurement. JCAP, 0805:002, 2008.

[108] Gino Isidori, Vyacheslav S. Rychkov, Alessandro Strumia, and Nikolaos Tetradis. Gravi- tational corrections to standard model vacuum decay. Phys. Rev., D77:025034, 2008.

[109] J. Ellis, J. R. Espinosa, G. F. Giudice, A. Hoecker, and A. Riotto. The Probable Fate of the Standard Model. Phys. Lett., B679:369–375, 2009.

[110] Joan Elias-Miro, Jose R. Espinosa, Gian F. Giudice, Gino Isidori, Antonio Riotto, and Alessandro Strumia. Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett., B709:222–228, 2012.

[111] Georges Aad et al. Combined search for the Standard Model Higgs boson using up to 4.9 fb−1 of pp collision data at √s = 7 TeV with the ATLAS detector at the LHC. Phys. Lett., B710:49–66, 2012.

[112] Serguei Chatrchyan et al. Combined results of searches for the standard model Higgs boson in pp collisions at √s = 7 TeV. Phys. Lett., B710:26–48, 2012.

[113] A. V. Bednyakov, B. A. Kniehl, A. F. Pikelner, and O. L. Veretin. Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision. Phys. Rev. Lett., 115(20):201802, 2015.

[114] Giuseppe Degrassi, Stefano Di Vita, Joan Elias-Miro, Jose R. Espinosa, Gian F. Giudice, Gino Isidori, and Alessandro Strumia. Higgs mass and vacuum stability in the Standard Model at NNLO. JHEP, 08:098, 2012.

[115] K. G. Chetyrkin and M. F. Zoller. Three-loop beta-functions for top-Yukawa and the Higgs self-interaction in the Standard Model. JHEP, 06:033, 2012.

[116] F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl, and M. Shaposhnikov. Higgs boson mass and new physics. Journal of High Energy Physics, 10:140, October 2012.

[117] C. Ford, D. R. T. Jones, P. W. Stephenson, and M. B. Einhorn. The Effective potential and the renormalization group. Nucl. Phys., B395:17–34, 1993.

[118] Ruth Gregory, Ian G. Moss, and Benjamin Withers. Black holes as bubble nucleation sites. JHEP, 03:081, 2014.

[119] Philipp Burda, Ruth Gregory, and Ian Moss. Gravity and the stability of the Higgs vacuum. Phys. Rev. Lett., 115:071303, 2015.

[120] Philipp Burda, Ruth Gregory, and Ian Moss. Vacuum metastability with black holes. JHEP, 08:114, 2015.

[121] Philipp Burda, Ruth Gregory, and Ian Moss. The fate of the Higgs vacuum. JHEP, 06:025, 2016.

[122] Kyohei Mukaida and Masaki Yamada. False Vacuum Decay Catalyzed by Black Holes. Phys. Rev., D96(10):103514, 2017.

[123] Kazunori Kohri and Hiroki Matsui. Electroweak Vacuum Stability and Gravitational Vacuum Polarization in Schwarzschild Black-hole Background. 2017.

[124] W. A. Hiscock. CAN BLACK HOLES NUCLEATE VACUUM PHASE TRANSITIONS? Phys. Rev., D35:1161–1170, 1987.

[125] W. Israel. Singular hypersurfaces and thin shells in general relativity. Nuovo Cim., B44S10:1, 1966. [Nuovo Cim.B44,1(1966)].

[126] G. W. Gibbons and S. W. Hawking. Action Integrals and Partition Functions in Quantum Gravity. Phys. Rev., D15:2752–2756, 1977.

[127] Peter Brockway Arnold. A Review of the Instability of Hot Electroweak Theory and its Bounds on mh and mt. In 7th International Seminar on High-energy Physics (Quarks 92) Zvenigorod, Russia, May 11-17, 1992, pages 403–412, 1992.

[128] Nobuyuki Sakai and Kei-ichi Maeda. Junction conditions of Friedmann-Robertson-Walker space-times. Phys. Rev., D50:5425–5428, 1994.

[129] J. R. Morris. Stability of a class of neutral vacuum bubbles. Phys. Rev., D87(8):085022, 2013.

[130] Steven K. Blau, E. I. Guendelman, and Alan H. Guth. The Dynamics of False Vacuum Bubbles. Phys. Rev., D35:1747, 1987.

[131] V. A. Berezin, V. A. Kuzmin, and I. I. Tkachev. O(3) Invariant Tunneling in General Relativity. Phys. Lett., B207:397–403, 1988.

[132] Samir D. Mathur. Tunneling into fuzzball states. Gen. Rel. Grav., 42:113–118, 2010.

[133] S. W. Hawking and I. G. Moss. Fluctuations in the Inflationary Universe. Nucl. Phys., B224:180, 1983.

[134] Andrei D. Linde. Hard art of the universe creation (stochastic approach to tunneling and baby universe formation). Nucl. Phys., B372:421–442, 1992.

[135] Leonard Susskind. The Anthropic landscape of string theory. pages 247–266, 2003.

[136] Andrei D. Linde. Scalar Field Fluctuations in Expanding Universe and the New Inflation- ary Universe Scenario. Phys. Lett., 116B:335–339, 1982.

[137] Alexei A. Starobinsky. Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations. Phys. Lett., 117B:175–178, 1982.

[138] P. C. W. Davies. Cosmological Horizons and Entropy. Class. Quant. Grav., 5:1349, 1988.

[139] Claus Kiefer, David Polarski, and Alexei A. Starobinsky. Entropy of gravitons produced in the early universe. Phys. Rev., D62:043518, 2000.

[140] David Campo and Renaud Parentani. Inflationary spectra and partially decohered distri- butions. Phys. Rev., D72:045015, 2005.

[141] Claus Kiefer and David Polarski. Why do cosmological perturbations look classical to us? Adv. Sci. Lett., 2:164–173, 2009.

[142] T. J. Hollowood and J. I. McDonald. Decoherence, discord and the quantum master equation for cosmological perturbations. Phys. Rev., D95(10):103521, 2017.

[143] Robert H. Brandenberger, Viatcheslav F. Mukhanov, and T. Prokopec. Entropy of a classical stochastic field and cosmological perturbations. Phys. Rev. Lett., 69:3606–3609, 1992.

[144] Robert H. Brandenberger, T. Prokopec, and Viatcheslav F. Mukhanov. The Entropy of the gravitational field. Phys. Rev., D48:2443–2455, 1993.

[145] D. Boyanovsky. Effective field theory during inflation. II. Stochastic dynamics and power spectrum suppression. Phys. Rev., D93:043501, 2016.

[146] Vincent Vennin and Alexei A. Starobinsky. Correlation Functions in Stochastic Inflation. Eur. Phys. J., C75:413, 2015.

[147] Arjun Berera. Warm inflation. Phys. Rev. Lett., 75:3218–3221, 1995.

[148] Arjun Berera, Ian G. Moss, and Rudnei O. Ramos. Warm Inflation and its Microphysical Basis. Rept. Prog. Phys., 72:026901, 2009.

[149] Sam Bartrum, Mar Bastero-Gil, Arjun Berera, Rafael Cerezo, Rudnei O. Ramos, and Joao G. Rosa. The importance of being warm (during inflation). Phys. Lett., B732:116– 121, 2014.

[150] Mar Bastero-Gil, Arjun Berera, Rudnei O. Ramos, and Joao G. Rosa. Warm Little Infla- ton. Phys. Rev. Lett., 117(15):151301, 2016.

[151] C. Jarzynski. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett., 78(14):2690–2693, 1997.

[152] Denis J. Evans, E. G. D. Cohen, and G. P. Morriss. Probability of second law violations in shearing steady states. Phys. Rev. Lett., 71:2401–2404, Oct 1993.

[153] G. Gallavotti and E. G. D. Cohen. Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett., 74:2694–2697, Apr 1995.

[154] Richard L. Arnowitt, Stanley Deser, and Charles W. Misner. Dynamical Structure and Definition of Energy in General Relativity. Phys. Rev., 116:1322–1330, 1959.

[155] David Polarski and Alexei A. Starobinsky. Semiclassicality and decoherence of cosmological perturbations. Class. Quant. Grav., 13:377–392, 1996.

[156] Claus Kiefer, Ingo Lohmar, David Polarski, and Alexei A. Starobinsky. Pointer states for primordial fluctuations in inflationary cosmology. Class. Quant. Grav., 24:1699–1718, 2007.

[157] J. Lesgourgues, David Polarski, and Alexei A. Starobinsky. Quantum to classical transition of cosmological perturbations for nonvacuum initial states. Nucl. Phys., B497:479–510, 1997.

[158] Claus Kiefer, David Polarski, and Alexei A. Starobinsky. Quantum to classical transition for fluctuations in the early universe. Int. J. Mod. Phys., D7:455–462, 1998.

[159] David H. Lyth and David Seery. Classicality of the primordial perturbations. Phys. Lett., B662:309–313, 2008.

[160] Cliff P. Burgess, R. Holman, and D. Hoover. Decoherence of inflationary primordial fluc- tuations. Phys. Rev., D77:063534, 2008.

[161] Claus Kiefer and David Polarski. Emergence of classicality for primordial fluctuations: Concepts and analogies. Annalen Phys., 7:137–158, 1998.

[162] D. Giulini, C. Kiefer, E. Joos, J. Kupsch, I. O. Stamatescu, and H. D. Zeh. Decoherence and the appearance of a classical world in quantum theory. 1996.

[163] W. G. Unruh. Notes on black hole evaporation. Phys. Rev., D14:870, 1976.

[164] R. Brout, S. Massar, R. Parentani, and Ph. Spindel. A Primer for black hole quantum physics. Phys. Rept., 260:329–454, 1995.

[165] Marc Casals, Sam R. Dolan, Brien C. Nolan, Adrian C. Ottewill, and Elizabeth Winstan- ley. Quantization of fermions on Kerr space-time. Phys. Rev., D87(6):064027, 2013.

[166] Jurgen Audretsch and Rainer Muller. Amplification of the black hole Hawking radiation by stimulated emission. Phys. Rev., D45:513–519, 1992.

[167] U. A. Yajnik and K. Narayan. CPT invariance and canonical quantization inside the Schwarzschild black hole. Class. Quant. Grav., 15:1315–1321, 1998.

[168] Esteban A. Calzetta and Bei-Lok B. Hu. Nonequilibrium Quantum Field Theory. Cam- bridge Monographs on Mathematical Physics. Cambridge University Press, 2008.

[169] Yoshiko Kanada-En’yo. Quantum decoherence in the entanglement entropy of a com- posite particle and its relationship to coarse graining in the Husimi function. PTEP, 2015(5):051D01, 2015.

[170] Anshul Saini and Dejan Stojkovic. Radiation from a collapsing object is manifestly unitary. Phys. Rev. Lett., 114(11):111301, 2015.

[171] Hikaru Kawai and Yuki Yokokura. Interior of Black Holes and Information Recovery. Phys. Rev., D93(4):044011, 2016.

[172] I. L. Bogolyubsky and V. G. Makhankov. On the Pulsed Soliton Lifetime in Two Classical Relativistic Theory Models. JETP Lett., 24:12, 1976.

[173] H. Segur and M. D. Kruskal. Nonexistence of Small Amplitude Breather Solutions in ϕ4 Theory. Phys. Rev. Lett., 58:747–750, 1987.

[174] Marcelo Gleiser. Pseudostable bubbles. Phys. Rev., D49:2978–2981, 1994.

[175] Edmund J. Copeland, M. Gleiser, and H. R. Muller. Oscillons: Resonant configurations during bubble collapse. Phys. Rev., D52:1920–1933, 1995.

[176] Marcelo Gleiser and Andrew Sornborger. Longlived localized field configurations in small lattices: Application to oscillons. Phys. Rev., E62:1368–1374, 2000.

[177] S. Kasuya, M. Kawasaki, and Fuminobu Takahashi. I-balls. Phys. Lett., B559:99–106, 2003.

[178] Marcelo Gleiser. d-dimensional oscillating scalar field lumps and the dimensionality of space. Phys. Lett., B600:126–132, 2004.

[179] Gyula Fodor, Peter Forgacs, Philippe Grandclement, and Istvan Racz. Oscillons and Quasi-breathers in the phi**4 Klein-Gordon model. Phys. Rev., D74:124003, 2006.

[180] Mark Hindmarsh and Petja Salmi. Numerical investigations of oscillons in 2 dimensions. Phys. Rev., D74:105005, 2006.

[181] Mustafa A. Amin, Richard Easther, Hal Finkel, Raphael Flauger, and Mark P. Hertzberg. Oscillons After Inflation. Phys. Rev. Lett., 108:241302, 2012.

[182] Kyohei Mukaida, Masahiro Takimoto, and Masaki Yamada. On Longevity of I- ball/Oscillon. JHEP, 03:122, 2017.

[183] Pawel O. Mazur and Emil Mottola. Gravitational condensate stars: An alternative to black holes. 2001.

[184] Pawel O. Mazur and Emil Mottola. Gravitational vacuum condensate stars. Proc. Nat. Acad. Sci., 101:9545–9550, 2004.

[185] Stephen Hawking. Gravitationally collapsed objects of very low mass. Mon. Not. Roy. Astron. Soc., 152:75, 1971.

[186] Bernard J. Carr and S. W. Hawking. Black holes in the early Universe. Mon. Not. Roy. Astron. Soc., 168:399–415, 1974.

[187] Bernard J. Carr. The Primordial black hole mass spectrum. Astrophys. J., 201:1–19, 1975.

[188] P. Ivanov, P. Naselsky, and I. Novikov. Inflation and primordial black holes as dark matter. Phys. Rev., D50:7173–7178, 1994.

[189] Juan Garcia-Bellido, Andrei D. Linde, and David Wands. Density perturbations and black hole formation in hybrid inflation. Phys. Rev., D54:6040–6058, 1996.

[190] M. Kawasaki, N. Sugiyama, and T. Yanagida. Primordial black hole formation in a double inflation model in supergravity. Phys. Rev., D57:6050–6056, 1998.

[191] Jun’ichi Yokoyama. Chaotic new inflation and formation of primordial black holes. Phys. Rev., D58:083510, 1998.

[192] Jaume Garriga, Alexander Vilenkin, and Jun Zhang. Black holes and the multiverse. JCAP, 1602(02):064, 2016.

[193] Juan Garcia-Bellido and Ester Ruiz Morales. Primordial black holes from single field models of inflation. Phys. Dark Univ., 18:47–54, 2017.

[194] Heling Deng and Alexander Vilenkin. Primordial black hole formation by vacuum bubbles. JCAP, 1712(12):044, 2017.

[195] Mark P. Hertzberg and Masaki Yamada. Primordial Black Holes from Polynomial Poten- tials in Single Field Inflation. Phys. Rev., D97(8):083509, 2018.

[196] Peter Brockway Arnold. GRAVITY AND FALSE VACUUM DECAY RATES: O(3) SO- LUTIONS. Nucl. Phys., B346:160–192, 1990.

[197] V. A. Berezin, V. A. Kuzmin, and I. I. Tkachev. Black holes initiate false vacuum decay. Phys. Rev., D43:3112–3116, 1991.

[198] A. Gomberoff, M. Henneaux, C. Teitelboim, and F. Wilczek. Thermal decay of the cos- mological constant into black holes. Phys. Rev. D, 69(8):083520, April 2004.

[199] J. Garriga and A. Megevand. Decay of de Sitter Vacua by Thermal Activation. Interna- tional Journal of Theoretical Physics, 43:883–904, March 2004.

[200] Pisin Chen, Guillem Domenech, Misao Sasaki, and Dong-han Yeom. Thermal activation of thin-shells in anti-de Sitter black hole spacetime. JHEP, 07:134, 2017.

[201] Philippa S. Cole and Christian T. Byrnes. Extreme scenarios: the tightest possible con- straints on the power spectrum due to primordial black holes. JCAP, 1802(02):019, 2018.

[202] Dmitry Gorbunov, Dmitry Levkov, and Alexander Panin. Fatal youth of the Universe: black hole threat for the electroweak vacuum during preheating. JCAP, 1710(10):016, 2017.

[203] Alexander Kusenko. Phase transitions precipitated by solitosynthesis. Phys. Lett., B406:26–33, 1997.

[204] D. Metaxas. Nontopological solitons as nucleation sites for cosmological phase transitions. Phys. Rev., D63:083507, 2001.

[205] Lauren Pearce. Solitosynthesis induced phase transitions. Phys. Rev., D85:125022, 2012.

[206] H. Kawai, Y. Matsuo, and Y. Yokokura. a Self-Consistent Model of the Black Hole Evap- oration. International Journal of Modern Physics A, 28:1350050, June 2013.

[207] H. Kawai and Y. Yokokura. Phenomenological description of the interior of the Schwarzschild black hole. International Journal of Modern Physics A, 30:1550091, May 2015.

[208] H. Kawai and Y. Yokokura. A Model of Black Hole Evaporation and 4D Weyl Anomaly. Universe, 3:51, June 2017.

[209] Katsuhiko Sato and Jun’ichi Yokoyama. Inflationary cosmology: First 30+ years. Int. J. Mod. Phys., D24(11):1530025, 2015.

[210] Katsuhiko Sato, Misao Sasaki, Hideo Kodama, and Kei-ichi Maeda. Creation of Wormholes by First Order Phase Transition of a Vacuum in the Early Universe. Prog. Theor. Phys., 65:1443, 1981.

[211] Ki-Myeong Lee and Erick J. Weinberg. Decay of the True Vacuum in Curved Space-time. Phys. Rev., D36:1088, 1987.

[212] Puneet Batra and Matthew Kleban. Transitions Between de Sitter Minima. Phys. Rev., D76:103510, 2007.

[213] Jaume Garriga and Alexander Vilenkin. Recycling universe. Phys. Rev., D57:2230–2244, 1998.

[214] I. G. Moss. BLACK HOLE BUBBLES. Phys. Rev., D32:1333, 1985.

[215] Anthony Aguirre and Matthew C. Johnson. Two tunnels to inflation. Phys. Rev., D73:123529, 2006.

[216] S. Ansoldi and T. Tanaka. Tunnelling with wormhole creation. J. Exp. Theor. Phys., 120(3):460–469, 2015.

[217] Edward Farhi, Alan H. Guth, and Jemal Guven. Is It Possible to Create a Universe in the Laboratory by Quantum Tunneling? Nucl. Phys., B339:417–490, 1990.

[218] Willy Fischler, Daniel Morgan, and Joseph Polchinski. Quantum Nucleation of False Vacuum Bubbles. Phys. Rev., D41:2638, 1990.

[219] W. Fischler, D. Morgan, and J. Polchinski. Quantization of False Vacuum Bubbles: A Hamiltonian Treatment of Gravitational Tunneling. Phys. Rev., D42:4042–4055, 1990.

[220] Pisin Chen, Yao-Chieh Hu, and Dong-han Yeom. Two interpretations of thin-shell instan- tons. Phys. Rev., D94:024044, 2016.

[221] Misao Sasaki, Takahiro Tanaka, Kazuhiro Yamamoto, and Jun’ichi Yokoyama. Quantum state inside a vacuum bubble and creation of an open universe. Phys. Lett., B317:510–516, 1993.

[222] Kazuhiro Yamamoto, Misao Sasaki, and Takahiro Tanaka. Large angle CMB anisotropy in an open universe in the one bubble inflationary scenario. Astrophys. J., 455:412–418, 1995.

[223] Martin Bucher, Alfred S. Goldhaber, and Neil Turok. An open universe from inflation. Phys. Rev., D52:3314–3337, 1995.

[224] Valeri P. Frolov, M. A. Markov, and Viatcheslav F. Mukhanov. Black Holes as Possible Sources of Closed and Semiclosed Worlds. Phys. Rev., D41:383, 1990.

[225] Valeri P. Frolov, M. A. Markov, and Viatcheslav F. Mukhanov. THROUGH A BLACK HOLE INTO A NEW UNIVERSE? Phys. Lett., B216:272–276, 1989. [,52(1990)].

参考文献をもっと見る