リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Chronic inflammation as a molecular basis of nonalcoholic steatohepatitis : role of macrophages and fibroblasts in the liver」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Chronic inflammation as a molecular basis of nonalcoholic steatohepatitis : role of macrophages and fibroblasts in the liver

Itoh, Michiko Ogawa, Yoshihiro Suganami, Takayoshi 名古屋大学

2020.08

概要

The pathological spectrum of nonalcoholic fatty liver disease includes simple steatosis and nonalcoholic steatohepatitis (NASH), the latter of which is the leading cause of cirrhosis and hepatocellular carcinoma. The available evidence shows that parenchymal cell injury and death trigger inflammation and tissue fibrosis. During the development of liver fibrosis, stromal cells dramatically changes in their cellular component and activation status responding to hepatocyte injury due to various etiologies. It is important to understand how cell death induces chronic inflammation and fibrosis, and the disease-specific macrophages and fibroblasts responsible for NASH development under metabolic stress. This review discusses recent progress in the understanding the pathogenesis of NASH, focusing on disease-specific macrophages and fibroblasts.

この論文で使われている画像

参考文献

1. Matsuzawa Y, Funahashi T, Nakamura T. Molecular mechanism of metabolic syndrome X: contribution

of adipocytokines adipocyte-derived bioactive substances. Ann N Y Acad Sci. 1999;892:146–154. doi:

10.1111/j.1749-6632.1999.tb07793.x.

2. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or

cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10(6):330–344. doi: 10.1038/nrgastro.2013.41.

3. Younossi ZM. Non-alcoholic fatty liver disease: a global public health perspective. J Hepatol.

2019;70(3):531–544. doi: 10.1016/j.jhep.2018.10.033.

4. Mahady SE, George J. Management of nonalcoholic steatohepatitis: an evidence-based approach. Clin Liver

Dis. 2012;16(3):631–645. doi: 10.1016/j.cld.2012.05.003.

5. Wong MCS, Huang JLW, George J, et al. The changing epidemiology of liver diseases in the Asia-Pacific

region. Nat Rev Gastroenterol Hepatol. 2019;16(1):57–73. doi: 10.1038/s41575-018-0055-0.

6. Machado MV, Diehl AM. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology. 2016;150(8):1769–

1777. doi: 10.1053/j.gastro.2016.02.066.

7. Younossi Z, Tacke F, Arrese M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019;69(6):2672–2682. doi: 10.1002/hep.30251.

8. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study

of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142(7):1592–1609.

396

Michiko Itoh et al

doi: 10.1053/j.gastro.2012.04.001.

9. Rinella ME, Sanyal AJ. Management of NAFLD: a stage-based approach. Nat Rev Gastroenterol Hepatol.

2016;13(4):196–205. doi: 10.1038/nrgastro.2016.3.

10. Younossi ZM, Golabi P, de Avila L, et al. The global epidemiology of NAFLD and NASH in patients

with type 2 diabetes: a systematic review and meta-analysis. J Hepatol. 2019;71(4):793–801. doi: 10.1016/j.

jhep.2019.06.021.

11. Ekstedt M, Hagstrom H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality

in NAFLD after up to 33 years of follow-up. Hepatology. 2015;61(5):1547–1554. doi: 10.1002/hep.27368.

12. Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with

long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149(2):389–397.

doi: 10.1053/j.gastro.2015.04.043.

13. Vilar-Gomez E, Calzadilla-Bertot L, Wai-Sun Wong V, et al. Fibrosis severity as a determinant of causespecific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study.

Gastroenterology. 2018;155(2):443–457. doi: 10.1053/j.gastro.2018.04.034.

14. Reimer KC, Wree A, Roderburg C, Tacke F. New drugs for NAFLD: lessons from basic models to the

clinic. Hepatol Int. 2020;14(1):8–23. doi: 10.1007/s12072-019-10001-4.

15. Liu Y, Meyer C, Xu C, et al. Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver

Physiol. 2013;304(5):G449–468. doi: 10.1152/ajpgi.00199.2012.

16. Farrell G, Schattenberg JM, Leclercq I, et al. Mouse models of nonalcoholic steatohepatitis: toward

optimization of their relevance to human nonalcoholic steatohepatitis. Hepatology. 2019;69(5):2241–2257.

doi: 10.1002/hep.30333.

17. Ito M, Suzuki J, Tsujioka S, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic

exposure to high-fat diet. Hepatol Res. 2007;37(1):50–57. doi: 10.1111/j.1872-034X.2007.00008.x.

18. DeLeve LD, Wang X, Kanel GC, Atkinson RD, McCuskey RS. Prevention of hepatic fibrosis in a murine

model of metabolic syndrome with nonalcoholic steatohepatitis. Am J Pathol. 2008;173(4):993–1001. doi:

10.2353/ajpath.2008.070720.

19. Saxena NK, Ikeda K, Rockey DC, Friedman SL, Anania FA. Leptin in hepatic fibrosis: evidence for increased

collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology. 2002;35(4):762–771.

doi: 10.1053/jhep.2002.32029.

20. Itoh M, Suganami T, Nakagawa N, et al. Melanocortin 4 receptor-deficient mice as a novel mouse model

of nonalcoholic steatohepatitis. Am J Pathol. 2011;179(5):2454–2463. doi: 10.1016/j.ajpath.2011.07.014.

21. Suganami T, Tanaka M, Ogawa Y. Adipose tissue inflammation and ectopic lipid accumulation. Endocr J.

2012;59(10):849–857. doi: 10.1507/endocrj.ej12-0271.

22. Balthasar N, Dalgaard LT, Lee CE, et al. Divergence of melanocortin pathways in the control of food

intake and energy expenditure. Cell. 2005;123(3):493–505. doi: 10.1016/j.cell.2005.08.035.

23. Nogueiras R, Wiedmer P, Perez-Tilve D, et al. The central melanocortin system directly controls peripheral

lipid metabolism. J Clin Invest. 2007;117(11):3475–3488. doi: 10.1172/JCI31743.

24. Tanaka M, Suganami T, Sugita S, et al. Role of central leptin signaling in renal macrophage infiltration.

Endocr J. 2010;57(1):61–72. doi: 10.1507/endoerij.k09e-296.

25. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842–845. doi:

10.1016/s0016-5085(98)70599-2.

26. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel

hits hypothesis. Hepatology. 2010;52(5):1836–1846. doi: 10.1002/hep.24001.

27. Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent

features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125(2):437–443. doi: 10.1016/

s0016-5085(03)00907-7.

28. Goto T, Itoh M, Suganami T, et al. Obeticholic acid protects against hepatocyte death and liver fibrosis in

a murine model of nonalcoholic steatohepatitis. Sci Rep. 2018;8(1):8157. doi: 10.1038/s41598-018-26383-8.

29. Komiya C, Tanaka M, Tsuchiya K, et al. Antifibrotic effect of pirfenidone in a mouse model of human

nonalcoholic steatohepatitis. Sci Rep. 2017;7:44754. doi: 10.1038/srep44754.

30. Witek RP, Stone WC, Karaca FG, et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model

of nonalcoholic steatohepatitis. Hepatology. 2009;50(5):1421–1430. doi: 10.1002/hep.23167.

31. Itoh M, Kato H, Suganami T, et al. Hepatic crown-like structure: a unique histological feature in

non-alcoholic steatohepatitis in mice and humans. PLoS One. 2013;8(12):e82163. doi: 10.1371/journal.

pone.0082163.

32. Itoh M, Suganami T, Kato H, et al. CD11c+ resident macrophages drive hepatocyte death-triggered liver

fibrosis in a murine model of nonalcoholic steatohepatitis. JCI Insight. 2017;2(22):e92902. doi: 10.1172/

397

Role of chronic inflammation in NASH

jci.insight.92902.

33. Satoh T, Nakagawa K, Sugihara F, et al. Identification of an atypical monocyte and committed progenitor

involved in fibrosis. Nature. 2017;541(7635):96–101. doi: 10.1038/nature20611.

34. Seki E, de Minicis S, Inokuchi S, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology.

2009;50(1):185–197. doi: 10.1002/hep.22952.

35. Miura, K., Yang, L., van Rooijen, N., Ohnishi, H. & Seki, E. Hepatic recruitment of macrophages promotes

nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302(11):G1310–

1321. doi:10.1152/ajpgi.00365.2011.

36. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol.

2017;14(7):397–411. doi: 10.1038/nrgastro.2017.38.

37. Burt AD. Pathobiology of hepatic stellate cells. J Gastroenterol. 1999;34(3):299–304. doi: 10.1007/

s005350050264

38. Asakawa M, Itoh M, Suganami T, et al. Upregulation of cancer-associated gene expression in activated

fibroblasts in a mouse model of non-alcoholic steatohepatitis. Sci Rep. 2019;9(1):19601. doi: 10.1038/

s41598-019-56039-0.

39. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–598. doi:

10.1038/nrc.2016.73.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る