リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The role of CUB domain-containing protein 1 and MET interaction in invasion of breast cancer cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The role of CUB domain-containing protein 1 and MET interaction in invasion of breast cancer cells

河瀨, 直之 大阪大学 DOI:10.18910/87839

2022.03.24

概要

Cancer invasion and metastasis are the major causes of cancer patient mortality. Various growth factors, including hepatocyte growth factor (HGF), are known to promote cancer invasion and metastasis, but the regulatory mechanisms involved are not fully understood. Here, I and my colleague show that HGFpromoted migration and invasion of breast cancer cells are regulated by CUB domain-containing protein 1 (CDCP1), a transmembrane activator of SRC kinase. In metastatic human breast cancer cell line MDA-MB-231, which highly expresses the HGF receptor MET and CDCP1, our laboratory show that CDCP1 knockdown attenuated HGF-induced MET activation, followed by suppression of lamellipodia formation and cell migration/invasion. In contrast, in the low invasive/non-metastatic breast cancer cell line T47D, which had no detectable MET and CDCP1 expression, ectopic MET expression stimulated the HGF-dependent activation of invasive activity, and concomitant CDCP1 expression activated SRC and further promoted invasive activity. In these cells, CDCP1 expression dramatically activated HGF-induced membrane remodeling, which was accompanied by activation of the small GTPase Rac1. Analysis of guanine nucleotide exchange factors revealed that ARHGEF7 was specifically required for CDCP1-dependent induction of HGF-induced invasive ability. Furthermore, immunofluorescence staining demonstrated that CDCP1 co-accumulated with ARHGEF7. Finally, I confirmed that the CDCP1-SRC axis was also crucial for HGF and ARHGEF7-RAC1 signaling in MDA-MB-231 cells. Altogether, these results demonstrate that the CDCP1-SRC-ARHGEF7-RAC1 pathway plays an important role in the HGF-induced invasion of a subset of breast cancer cells.

参考文献

1. Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., Tashiro, K., and Shimizu, S. (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342, 440-443

2. Gherardi, E., Gray, J., Stoker, M., Perryman, M., and Furlong, R. (1989) Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc Natl Acad Sci U S A 86, 5844-5848

3. Weidner, C., Schmelz, M., Schmidt, R., Hansson, B., Handwerker, H. O., and Torebjork, H. E. (1999) Functional attributes discriminating mechano-insensitive and mechano-responsive C nociceptors in human skin. J Neurosci 19, 10184-10190

4. Bottaro, D. P., Rubin, J. S., Faletto, D. L., Chan, A. M., Kmiecik, T. E., Vande Woude, G. F., and Aaronson, S. A. (1991) Identification of the hepatocyte growth factor receptor as the cmet proto-oncogene product. Science 251, 802-804

5. Trusolino, L., Bertotti, A., and Comoglio, P. M. (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11, 834-848

6. Borowiak, M., Garratt, A. N., Wustefeld, T., Strehle, M., Trautwein, C., and Birchmeier, C. (2004) Met provides essential signals for liver regeneration. Proc Natl Acad Sci U S A 101, 10608-10613

7. Nakamura, T., Sakai, K., Nakamura, T., and Matsumoto, K. (2011) Hepatocyte growth factor twenty years on: Much more than a growth factor. J Gastroenterol Hepatol 26 Suppl 1, 188- 202

8. Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A., and Birchmeier, C. (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768-771

9. Matsumoto, K., Umitsu, M., De Silva, D. M., Roy, A., and Bottaro, D. P. (2017) Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci 108, 296-307

10. Sierra, J. R., and Tsao, M. S. (2011) c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol 3, S21-35

11. Comoglio, P. M., Trusolino, L., and Boccaccio, C. (2018) Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. Nat Rev Cancer 18, 341-358

12. Kajiwara, K., Yamano, S., Aoki, K., Okuzaki, D., Matsumoto, K., and Okada, M. (2021) CDCP1 promotes compensatory renal growth by integrating Src and Met signaling. Life Sci Alliance 4

13. Ikeda, J., Oda, T., Inoue, M., Uekita, T., Sakai, R., Okumura, M., Aozasa, K., and Morii, E. (2009) Expression of CUB domain containing protein (CDCP1) is correlated with prognosis and survival of patients with adenocarcinoma of lung. Cancer Sci 100, 429-433

14. Miyazawa, Y., Uekita, T., Hiraoka, N., Fujii, S., Kosuge, T., Kanai, Y., Nojima, Y., and Sakai, R. (2010) CUB domain-containing protein 1, a prognostic factor for human pancreatic cancers, promotes cell migration and extracellular matrix degradation. Cancer Res 70, 5136- 5146

15. He, Y., Wu, A. C., Harrington, B. S., Davies, C. M., Wallace, S. J., Adams, M. N., Palmer, J. S., Roche, D. K., Hollier, B. G., Westbrook, T. F., Hamidi, H., Konecny, G. E., Winterhoff, B., Chetty, N. P., Crandon, A. J., Oliveira, N. B., Shannon, C. M., Tinker, A. V., Gilks, C. B., Coward, J. I., Lumley, J. W., Perrin, L. C., Armes, J. E., and Hooper, J. D. (2016) Elevated CDCP1 predicts poor patient outcome and mediates ovarian clear cell carcinoma by promoting tumor spheroid formation, cell migration and chemoresistance. Oncogene 35, 468- 478

16. Turdo, F., Bianchi, F., Gasparini, P., Sandri, M., Sasso, M., De Cecco, L., Forte, L., Casalini, P., Aiello, P., Sfondrini, L., Agresti, R., Carcangiu, M. L., Plantamura, I., Sozzi, G., Tagliabue, E., and Campiglio, M. (2016) CDCP1 is a novel marker of the most aggressive human triple-negative breast cancers. Oncotarget 7, 69649-69665

17. Liu, H., Ong, S. E., Badu-Nkansah, K., Schindler, J., White, F. M., and Hynes, R. O. (2011) CUB-domain-containing protein 1 (CDCP1) activates Src to promote melanoma metastasis. Proc Natl Acad Sci U S A 108, 1379-1384

18. Uekita, T., and Sakai, R. (2011) Roles of CUB domain-containing protein 1 signaling in cancer invasion and metastasis. Cancer Sci 102, 1943-1948

19. Wright, H. J., Arulmoli, J., Motazedi, M., Nelson, L. J., Heinemann, F. S., Flanagan, L. A., and Razorenova, O. V. (2016) CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer. Oncogene 35, 4762-4772

20. Leroy, C., Shen, Q., Strande, V., Meyer, R., McLaughlin, M. E., Lezan, E., Bentires-Alj, M., Voshol, H., Bonenfant, D., and Alex Gaither, L. (2015) CUB-domain-containing protein 1 overexpression in solid cancers promotes cancer cell growth by activating Src family kinases. Oncogene 34, 5593-5598

21. Trusolino, L., Cavassa, S., Angelini, P., Ando, M., Bertotti, A., Comoglio, P. M., and Boccaccio, C. (2000) HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J 14, 1629-1640

22. Michiels, F., Habets, G. G., Stam, J. C., van der Kammen, R. A., and Collard, J. G. (1995) A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375, 338-340

23. Koh, C. G., Manser, E., Zhao, Z. S., Ng, C. P., and Lim, L. (2001) Beta1PIX, the PAKinteracting exchange factor, requires localization via a coiled-coil region to promote microvillus-like structures and membrane ruffles. J Cell Sci 114, 4239-4251

24. Tamas, P., Solti, Z., Bauer, P., Illes, A., Sipeki, S., Bauer, A., Farago, A., Downward, J., and Buday, L. (2003) Mechanism of epidermal growth factor regulation of Vav2, a guanine nucleotide exchange factor for Rac. J Biol Chem 278, 5163-5171

25. Huveneers, S., and Danen, E. H. (2009) Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci 122, 1059-1069

26. Sanematsu, F., Nishikimi, A., Watanabe, M., Hongu, T., Tanaka, Y., Kanaho, Y., Cote, J. F., and Fukui, Y. (2013) Phosphatidic acid-dependent recruitment and function of the Rac activator DOCK1 during dorsal ruffle formation. J Biol Chem 288, 8092-8100

27. Feng, Q., Baird, D., Peng, X., Wang, J., Ly, T., Guan, J. L., and Cerione, R. A. (2006) Cool-1 functions as an essential regulatory node for EGF receptor- and Src-mediated cell growth. Nat Cell Biol 8, 945-956

28. Kojima, T., Fukuda, M., Watanabe, Y., Hamazato, F., and Mikoshiba, K. (1997) Characterization of the pleckstrin homology domain of Btk as an inositol polyphosphate and phosphoinositide binding domain. Biochem Biophys Res Commun 236, 333-339

29. Varnai, P., Rother, K. I., and Balla, T. (1999) Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 274, 10983-10989

30. Rameh, L. E., Arvidsson, A., Carraway, K. L., 3rd, Couvillon, A. D., Rathbun, G., Crompton, A., VanRenterghem, B., Czech, M. P., Ravichandran, K. S., Burakoff, S. J., Wang, D. S., Chen, C. S., and Cantley, L. C. (1997) A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem 272, 22059-22066

31. Clague, M. J. (2011) Met receptor: a moving target. Sci Signal 4, pe40

32. Arcaro, A., Aubert, M., Espinosa del Hierro, M. E., Khanzada, U. K., Angelidou, S., Tetley, T. D., Bittermann, A. G., Frame, M. C., and Seckl, M. J. (2007) Critical role for lipid raftassociated Src kinases in activation of PI3K-Akt signalling. Cell Signal 19, 1081-1092

33. Campa, F., Machuy, N., Klein, A., and Rudel, T. (2006) A new interaction between Abi-1 and betaPIX involved in PDGF-activated actin cytoskeleton reorganisation. Cell Res 16, 759-770

34. Heidary Arash, E., Song, K. M., Song, S., Shiban, A., and Attisano, L. (2014) Arhgef7 promotes activation of the Hippo pathway core kinase Lats. EMBO J 33, 2997-3011

35. Omelchenko, T., Rabadan, M. A., Hernandez-Martinez, R., Grego-Bessa, J., Anderson, K. V., and Hall, A. (2014) beta-Pix directs collective migration of anterior visceral endoderm cells in the early mouse embryo. Genes Dev 28, 2764-2777

36. Wang, H., Han, M., Whetsell, W., Jr., Wang, J., Rich, J., Hallahan, D., and Han, Z. (2014) Tax-interacting protein 1 coordinates the spatiotemporal activation of Rho GTPases and regulates the infiltrative growth of human glioblastoma. Oncogene 33, 1558-1569

37. Hsu, Y. H., Lin, W. L., Hou, Y. T., Pu, Y. S., Shun, C. T., Chen, C. L., Wu, Y. Y., Chen, J. Y., Chen, T. H., and Jou, T. S. (2010) Podocalyxin EBP50 ezrin molecular complex enhances the metastatic potential of renal cell carcinoma through recruiting Rac1 guanine nucleotide exchange factor ARHGEF7. Am J Pathol 176, 3050-3061

38. Munoz-Bellvis, L., Fontanillo, C., Gonzalez-Gonzalez, M., Garcia, E., Iglesias, M., Esteban, C., Gutierrez, M. L., Abad, M. M., Bengoechea, O., De Las Rivas, J., Orfao, A., and Sayagues, J. M. (2012) Unique genetic profile of sporadic colorectal cancer liver metastasis versus primary tumors as defined by high-density single-nucleotide polymorphism arrays. Mod Pathol 25, 590-601

39. Goh, L. K., and Sorkin, A. (2013) Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol 5, a017459

40. Casar, B., Rimann, I., Kato, H., Shattil, S. J., Quigley, J. P., and Deryugina, E. I. (2014) In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated beta1 integrin and induction of FAK/PI3K/Akt motility signaling. Oncogene 33, 255-268

41. Alajati, A., Guccini, I., Pinton, S., Garcia-Escudero, R., Bernasocchi, T., Sarti, M., Montani, E., Rinaldi, A., Montemurro, F., Catapano, C., Bertoni, F., and Alimonti, A. (2015) Interaction of CDCP1 with HER2 enhances HER2-driven tumorigenesis and promotes trastuzumab resistance in breast cancer. Cell Rep 11, 564-576

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る