リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Finite element analysis of the fracture statistics of self-healing ceramics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Finite element analysis of the fracture statistics of self-healing ceramics

Ozaki Shingo 20408727 Nakamura Marika Osada Toshio 50596343 横浜国立大学

2020.09.11

概要

Self-healing materials have been recognized as a promising type of next-generation materials. Among them, self-healing ceramics play a particularly important role, and understanding them better is necessary. Therefore, in this study, we applied the oxidation kinetics-based constitutive model to finite element analysis of a series of damage-healing processes in self-healing ceramics (alumina/SiC composites). In the finite element analysis, the data on the microstructure distribution, such as relative density, size and aspect ratio of pores, and grain size, were taken as input values and reflected onto the parameters of a continuum damage model using a fracture mechanical model. We then performed a 3-point bending analysis, to consider both the self-healing effect under certain temperature and oxygen partial pressure conditions and scatter of the strength of the ceramics. Our results confirmed that the proposed methodology can reasonably reproduce both strength recovery and damage propagation behavior in self-healing ceramics.

この論文で使われている画像

参考文献

[1] Zwaag S. Self-healing materials: an alternative approach

to 20 centuries of materials science. The Netherlands:

Springer Series in Materials Science; 2007.

Science and Technology of Advanced Materials 21 (2020) 624

[2] Lange FF, Radford KC. Healing of surface cracks in

polycrystalline Al2O3. J Am Ceram Soc. 1970;53

(7):420–421.

[3] Gupta TK. Crack healing and strengthening of ther­

mally shocked alumina. J Am Ceram Soc. 1976;59

(5–6):259–262.

[4] Zhao J, Stearns LC, Harmer MP, et al. Mechanical

behavior of Al2O3–SiC ‘Nanocomposite’. J Am Ceram

Soc. 1993;76(2):503–510.

[5] Thompson AM, Chan HM, Harmer MP. Crack healing

and surface relaxation in Al2O3–SiC ‘Nanocomposite’.

J Am Ceram Soc. 1995;78:567–571.

[6] Ando K, Furusawa K, Takahashi K, et al. Crackhealing ability of structural ceramics and a new meth­

odology to guarantee the structural integrity using the

ability and proof-test. J Eur Ceram Soc. 2005;25

(5):549–558.

[7] Nakao W, Mori S, Nakamura J, et al. Self-crackhealing behavior of mullite/SiC particle/SiC whisker

multi-composites and potential use for ceramic

springs. J Am Ceram Soc. 2006;89(4):1352–1357.

[8] Ono M, Nakao W, Takahashi K, et al. A new

methodology to guarantee the structural integrity

of Al2O3/SiC composite using crack healing and

a proof test. Fatigue Fract Eng Mater Struct.

2007;30:599–607.

[9] Osada T, Nakao W, Takahashi K, et al. Strength recov­

ery behavior of machined Al2O3/SiC nano-composite

ceramics by crack-healing. J Eur Ceram Soc. 2007;27

(10):3261–3267.

[10] Chu MC, Sato S, Kobayashi Y, et al. Damage

healing and strengthening behavior in intelligent

mullite/SiC ceramics. Fatigue Fract Eng Mater

Struct. 1995;18:1019–1029.

[11] Ando K, Ikeda T, Sato S, et al. A preliminary study on

crack healing behavior of Si3N4/SiC composite ceramics.

Fatigue Fract Eng Mater Struct. 1998;21:119–122.

[12] Ando K, Kim BS, Chu MC, et al. Crack-healing and

mechanical behavior of Al2O3/SiC composites at ele­

vated temperature. Fatigue Fract Eng Mater Struct.

2004;27:533–541.

[13] Nakao W, Ono M, Lee SK, et al. Critical crack-healing

condition under stress of SiC whisker reinforced

alumina. J Eur Ceram Soc. 2005;25:3649–3655.

[14] Nakao W, Takahashi K, Ando K. Threshold stress

during crack-healing treatment of structural ceramics

having the crack-healing ability. Mater Lett. 2007;61

(13):2711–2713.

[15] Osada T, Nakao W, Takahashi K, et al. Kinetics of

self-crack-healing of alumina/silicon carbide compo­

site including oxygen partial pressure effect. J Am

Ceram Soc. 2009;92(4):864–869.

[16] Osada T, Kamoda K, Mitome M, et al. A novel design

approach for self-crack-healing structural ceramics

with 3D networks of healing activator. Sci Rep.

2017;7(1):17853.

[17] Nakao W, Hayakawa T, Yanaseko T, et al. Advanced

fiber reinforced self-healing ceramics for middle range

temperature. Key Eng Mater. 2019;810:119–124.

[18] Voyiadjis GZ, Shojaei A, Li G. A thermodynamic

consistent damage and healing model for self healing

materials. Int J Plasticity. 2011;27(7):1025–1044.

[19] Voyiadjis GZ, Shojaei A, Li G, et al. A theory of

anisotropic healing and damage mechanics of

materials. Proc R Soc A. 2011;468(2137):163–183.

[20] Barbero EJ, Greco F, Lonetti P. Continuum

damage-healing mechanics with application to

S. OZAKI et al.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

self-healing composites. Int J Damage Mech. 2005;

14(1):51–81.

Drabi MK, Abu Al-Rub RK, Little DN. A continuum

damage mechanics framework for modelling microdamage healing. Int J Solids Struct. 2012;49:492–513.

Darabi MK, Abu Al-Rub RK, Masad EA, et al.

Constitutive modelling of fatigue damage response

of asphalt concrete materials with consideration of

micro-damage healing. Int J Solids Struct. 2013;50

(19):2901–2913.

Shojaei A, Li G, Fish J, et al. Multi-scale constitutive

modelling of ceramic matrix composites by conti­

nuum damage mechanics. Int J Solids Struct.

2014;51(23–24):4068–4081.

Shojaei A, Sharafi S, Li G. A multiscale theory of

self-crack-healing with solid healing agent assisted

by shape memory effect. Mech Mater. 2015;81:25–40.

Voyiadjis GZ, Kattan PI. Healing and super healing in

continuum damage mechanics. Int J Damage Mech.

2014;23(2):245–260.

Oucif C, Mauludin LM. Continuum damagehealing and super healing mechanics in brittle materials:

A state-of-the-art review. Appl Sci. 2018;8(12):2350.

Ponnusami SA, Krishnasamy J, Turteltaub S, et al. A

cohesive-zone crack healing model for self-healing

materials. Int J Solids Struct. 2018;134:249–263.

Ozaki S, Osada T, Nakao W. Finite element analysis of

the damage and healing behavior of self-healing cera­

mic materials. Int J Solids Struct. 2016;100:307–318.

Nakamura M, Takeo K, Osada T, et al. Finite element

analysis of self-healing and damage processes in

Alumina/SiC composite ceramics. Technologies.

2017;3(40):1–10.

Evans AG. Structural reliability: A processingdependent phenomenon. J Am Ceram Soc. 1982;

65(3):127–137.

Danzer R. A general strength distribution function for

brittle materials. J Eur Ceram Soc. 1992;10(6):461–472.

Peterlik H. Relationship of strength and defects of

ceramic materials and their treatment by Weibull

theory. J Ceram Soc Japan. 2001;109(1272):S121–

S126.

Danzer R, Supancic P, Pascual J, et al. Fracture

statics of ceramics—Weibull statistics and devia­

tions from Weibull statistics. Eng Fract Mech.

2007;74(18):2919–2932.

Danzer R, Lube T, Supancic P, et al. Fracture of

ceramics. Adv Eng Mater. 2008;10(4):275–298.

Quinn GD, Morrell R. Design data for engineering

ceramics: A review of the flexure test. J Am Ceram

Soc. 1991;74(9):2037–2066.

Ozaki S, Aoki Y, Osada T, et al. Finite element ana­

lysis of fracture statistics of ceramics: effects of grain

size and pore size distributions. J Am Ceram Soc.

2018;101(7):3191–3204.

Takeo K, Aoki Y, Osada T, et al. Finite element

analysis of the size effect on ceramic strength.

Materials. 2019;18(2885):1–13.

Oliver J. A consistent characteristic length or smeared

cracking models. Int J Numer Methods Eng. 1898;28

(2):461–474.

Kurumatani M, Terada K, Kato J. An isotropic

damage model based on fracture mechanics for

concrete. Eng Fract Mech. 2016;155:49–66.

Green DJ. Stress intensity factor estimates for annular

cracks at spherical voids. J Am Ceram Soc. 1980;63

(5–6):342–344.

Science and Technology of Advanced Materials 21 (2020) 625

[41] Seidel J, Claussen N, Rödel J. Reliability of alumina

ceramics: effect of grain size. J Am Ceram Soc.

1995;15(5):395–404.

[42] Zimmermann A, Hoffman M, Flinn BD, et al.

Fracture of alumina with controlled pores. J Am

Ceram Soc. 1998;81(9):2449–2457.

[43] Zimmermann A, Rödel J. Generalized Orowan-Petch

plot for brittle fracture. J Am Ceram Soc. 1998;81:

2527–2532.

S. OZAKI et al.

[44] Zimmermann A, Rodel J. Fracture statistics based

on pore/grain-size interactions. J Am Ceram Soc.

1999;82(8):2279–2281.

[45] Flinn BD, Bordia RK, Zimmermann A, et al.

Evolution of defect size and strength of porous alu­

mina during sintering. J Eur Ceram Soc. 2000;20

(14–15):2561–2568.

[46] LSCT, LS-DYNA user’s manual. LSCT Singapore.

2019.

...

参考文献をもっと見る