リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「SPOCK1は薬物性歯肉増殖症における上皮間葉転換の誘導に関与する」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

SPOCK1は薬物性歯肉増殖症における上皮間葉転換の誘導に関与する

リハブ, ヤーヤ, ファラ, サラム, アルシャルガビ YAHYA, FARA, SALLAM, AL-SHARGABI, REHAB 九州大学

2020.09.25

概要

Few studies have investigated the role of extracellular-matrix proteoglycans in the pathogenesis of drug-induced gingival overgrowth (DIGO). SPOCK1 is an extracellular proteoglycan that induces epithelial to mesenchymal transition (EMT) in several cancer cell lines and exhibits protease-inhibitory activity. However, the role of SPOCK1 in non-cancerous diseases such as DIGO has not been well-addressed. We demonstrated that the expression of SPOCK1, TGF-β1, and MMP-9 in calcium channel blocker- induced gingival overgrowth is higher than that in non-overgrowth tissues. Transgenic mice overexpressing Spock1 developed obvious gingival - overgrowth and fibrosis phenotypes, and positively correlated with EMT - like changes. Furthermore, in vitro data indicated a tri-directional interaction between SPOCK1, TGF-β1, and MMP-9 that led to gingival overgrowth. Our study shows that SPOCK1 up-regulation in a noncancerous disease and SPOCK1-induced EMT in gingival overgrowth occurs via cooperation and crosstalk between several potential signaling pathways. Therefore, SPOCK1 is a novel therapeutic target for gingival overgrowth and its expression is a potential risk of EMT induction in cancerous lesions.

この論文で使われている画像

参考文献

1. Agrawal, A. A. Gingival enlargements: Differential diagnosis and review of literature. World J. Clin. Cases 3, 779–788 (2015).

2. Van der Wall, E. E., Tuinzing, D. B. & Hes, J. Gingival hyperplasia induced by nifedipine, an arterial vasodilating drug. Oral Surg. Oral Med. Oral Pathol. 60, 38–40 (1985).

3. Ramirez-Ramiz, A., Brunet-LLobet, L., Lahor-Soler, E. & Miranda-Rius, J. On the cellular and molecular mechanisms of druginduced gingival overgrowth. Open Dent. J. 11, 420–435 (2017).

4. Castro, L. A. et al. Long-term effects of nifedipine on human gingival epithelium: a histopathological and immunohistochemical study. J. Oral Sci. 52, 55–62 (2010).

5. Dill, R. E. & Iacopino, A. M. Myofibroblasts in phenytoin-induced hyperplastic connective tissue in the rat and in human gingival overgrowth. J. Periodontol. 68, 375–380 (1997).

6. Dahllof, G., Reinholt, F. P., Hjerpe, A. & Modeer, T. A quantitative analysis of connective tissue components in phenytoin-induced gingival overgrowth in children. A stereological study. J. Periodontal Res. 19, 401–407 (1984).

7. Dahllof, G., Modeer, T., Reinholt, F. P., Wikstrom, B. & Hjerpe, A. Proteoglycans and glycosaminoglycans in phenytoin-induced gingival overgrowth. J. Periodontal Res. 21, 13–21 (1986).

8. Dreyfuss, J. L. et al. Differences in the expression of glycosaminoglycans in human fibroblasts derived from gingival overgrowths is related to TGF-beta up-regulation. Growth Factors 28, 24–33 (2010).

9. Mariani, G. et al. Ultrastructural and histochemical features of the ground substance in cyclosporin A-induced gingival overgrowth. J. Periodontol. 67, 21–27 (1996).

10. Stabellini, G. et al. Extracellular glycosaminoglycan changes in healthy and overgrown gingiva fibroblasts after cyclosporin A and cytokine treatments. J. oral Pathol. Med. 33, 346–353 (2004).

11. Gnoatto, N., Lotufo, R. F. M., Matsuda, M., Penna, V. & Marquezini, M. V. Expression of cell-surface heparan sulfate proteoglycans in human cyclosporin-induced gingival overgrowth. J. Periodontal Res. 42, 553–558 (2007).

12. Kim, S. S., Jackson-Boeters, L., Darling, M. R., Rieder, M. J. & Hamilton, D. W. Nifedipine induces periostin expression in gingival fibroblasts through TGF-beta. J. Dent. Res. 92, 1022–1028 (2013).

13. Nishimura, F. et al. Cathepsin-L, a key molecule in the pathogenesis of drug-induced and I-cell disease-mediated gingival overgrowth: a study with cathepsin-L-deficient mice. Am. J. Pathol. 161, 2047–2052 (2002).

14. Bohley, P. & Seglen, P. O. Proteases and proteolysis in the lysosome. Experientia 48, 151–157 (1992).

15. Bocock, J. P., Edgell, C.-J. S., Marr, H. S. & Erickson, A. H. Human proteoglycan testican-1 inhibits the lysosomal cysteine protease cathepsin L. Eur. J. Biochem. 270, 4008–4015 (2003).

16. Meh, P., Pavsic, M., Turk, V., Baici, A. & Lenarcic, B. Dual concentration-dependent activity of thyroglobulin type-1 domain of testican: specific inhibitor and substrate of cathepsin L. Biol. Chem. 386, 75–83 (2005).

17. Spolidorio, L. C., Spolidorio, D. M. & Holzhausen, M. Effects of long-term cyclosporin therapy on the periodontium of rats. J. Periodontal Res. 39, 257–262 (2004).

18. Yang, F., Lu, J., Yu, Y. & Gong, Y. Epithelial to mesenchymal transition in cyclosporine A-induced rat gingival overgrowth. Arch. Oral Biol. 81, 48–55 (2017).

19. Sume, S. S., Kantarci, A., Lee, A., Hasturk, H. & Trackman, P. C. Epithelial to mesenchymal transition in gingival overgrowth. Am. J. Pathol. 177, 208–218 (2010).

20. Kantarci, A. et al. Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis. J. Pathol. 210, 59–66 (2006).

21. Kantarci, A., Nseir, Z., Kim, Y.-S., Sume, S. S. & Trackman, P. C. Loss of basement membrane integrity in human gingival overgrowth. J. Dent. Res. 90, 887–893 (2011).

22. Kim, H.-P. et al. Testican-1-mediated epithelial-mesenchymal transition signaling confers acquired resistance to lapatinib in HER2positive gastric cancer. Oncogene 33, 3334–3341 (2014).

23. Zhou, X.-M., Zhang, H. & Han, X. Role of epithelial to mesenchymal transition proteins in gynecological cancers: pathological and therapeutic perspectives. Tumor Biol. 35, 9523–9530 (2014).

24. Song, X. et al. Up-regulation of SPOCK1 induces epithelial-mesenchymal transition and promotes migration and invasion in esophageal squamous cell carcinoma. J. Mol. Histol. 46, 347–356 (2015).

25. Fan, L.-C., Jeng, Y.-M., Lu, Y.-T. & Lien, H.-C. SPOCK1 is a novel transforming growth factor-beta-induced myoepithelial marker that enhances invasion and correlates with poor prognosis in breast cancer. PLoS One 11, e0162933 (2016).

26. Chen, D. et al. SPOCK1 promotes the invasion and metastasis of gastric cancer through Slug-induced epithelial-mesenchymal transition. J. Cell. Mol. Med. 22, 797–807 (2018).

27. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

28. Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L. & Arteaga, C. L. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275, 36803–36810 (2000).

29. Miao, L. et al. SPOCK1 is a novel transforming growth factor-beta target gene that regulates lung cancer cell epithelial-mesenchymal transition. Biochem. Biophys. Res. Commun. 440, 792–797 (2013).

30. Shu, Y.-J. et al. SPOCK1 as a potential cancer prognostic marker promotes the proliferation and metastasis of gallbladder cancer cells by activating the PI3K/AKT pathway. Mol. Cancer 14, 12 (2015).

31. Zhang, J. et al. SPOCK1 is up-regulated and promotes tumor growth via the PI3K/AKT signaling pathway in colorectal cancer. Biochem. Biophys. Res. Commun. 482, 870–876 (2017).

32. Yang, J. et al. SPOCK1 promotes the proliferation, migration and invasion of glioma cells through PI3K/AKT and Wnt/beta-catenin signaling pathways. Oncol. Rep. 35, 3566–3576 (2016).

33. Zhao, P. et al. Knockdown of SPOCK1 inhibits the proliferation and invasion in colorectal cancer cells by suppressing the PI3K/Akt pathway. Oncol. Res. 24, 437–445 (2016).

34. Tu, H. et al. Cyclosporin‐induced downregulation of the expression of E‐cadherin during proliferation of edentulous gingival epithelium in rats. J. Periodontol. 77, 832–839 (2006).

35. Gioia, M. et al. The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B. J. Mol. Biol. 386, 419–434 (2009).

36. Sand, J. M. et al. MMP mediated degradation of type IV collagen alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and clinical fibrosis–validation of two novel biomarker assays. PLoS One 8, e84934 (2013).

37. Li, Y. et al. SPOCK1 is regulated by CHD1L and blocks apoptosis and promotes HCC cell invasiveness and metastasis in mice. Gastroenterology 144, 179–191.e4 (2013).

38. Chen, Q. et al. SPOCK1 promotes tumor growth and metastasis in human prostate cancer. Drug Des. Devel. Ther. 10, 2311–2321 (2016).

39. Kantarci, A. et al. Apoptosis in gingival overgrowth tissues. J. Dent. Res. 86, 888–892 (2007).

40. Jenkins, G. The role of proteases in transforming growth factor-beta activation. Int. J. Biochem. Cell Biol. 40, 1068–1078 (2008).

41. Wipff, P.-J. & Hinz, B. Integrins and the activation of latent transforming growth factor beta1- an intimate relationship. Eur. J. Cell Biol. 87, 601–615 (2008).

42. Pisoschi, C., Stănciulescu, C., Munteanu, C., Fusaru, A. M. & Baniţă, M. Evidence for the epithelial-mesenchymal transition as a pathogenic mechanism of phenytoin-induced gingival overgrowth. Farmacia 60, 168–176 (2012).

43. Arora, H. et al. Immunohistochemical localization of epithelial mesenchymal transition markers in cyclosporine A induced gingival overgrowth. J. Clin. Diagn. Res. 10, ZC48–52 (2016).

44. Marcucci, F., Stassi, G. & De Maria, R. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat. Rev. Drug Discov. 15, 311–325 (2016).

45. Trackman, P. C. & Kantarci, A. Molecular and clinical aspects of drug-induced gingival overgrowth. J. Dent. Res. 94, 540–546 (2015).

46. Koshizuka, K. et al. Antitumor miR-150-5p and miR-150-3p inhibit cancer cell aggressiveness by targeting SPOCK1 in head and neck squamous cell carcinoma. Auris Nasus Larynx 45, 854–865 (2018).

47. Roll, S., Seul, J., Paulsson, M. & Hartmann, U. Testican-1 is dispensable for mouse development. Matrix Biol. 25, 373–381 (2006).

48. Malemud, C. J. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front. Biosci. 11, 1696–1701 (2006).

49. Mori, T. et al. Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J. Cell. Physiol. 181, 153–159 (1999).

50. Blom, I. E., Goldschmeding, R. & Leask, A. Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy? Matrix Biol. 21, 473–482 (2002).

51. Yu, F. et al. SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and temozolomide resistance. Cell Prolif. 49, 195–206 (2016).

52. Buduneli, N., Buduneli, E., Cinar, S., Lappin, D. & Kinane, D. F. Immunohistochemical evaluation of Ki-67 expression and apoptosis in cyclosporin A-induced gingival overgrowth. J. Periodontol. 78, 282–289 (2007).

53. Birraux, J., Kirby, J. A., Thomason, J. M. & Taylor, J. J. The effect of cyclosporin on cell division and apoptosis in human oral keratinocytes. J. Periodontal Res. 41, 297–302 (2006).

54. Shimizu, Y., Kataoka, M., Seto, H., Kido, J. & Nagata, T. Nifedipine induces gingival epithelial hyperplasia in rats through inhibition of apoptosis. J. Periodontol. 73, 861–867 (2002).

55. Kibe, T. et al. Immortalization and characterization of normal oral epithelial cells without using HPV and SV40 genes. Oral Sci. Int. 8, 20–28 (2011).

56. Bolos, V. et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J. Cell Sci. 116, 499–511 (2003).

57. Saegusa, M., Hashimura, M., Kuwata, T. & Okayasu, I. Requirement of the Akt/beta-catenin pathway for uterine carcinosarcoma genesis, modulating E-cadherin expression through the transactivation of slug. Am. J. Pathol. 174, 2107–2115 (2009).

58. Li, P., Xiao, Z., Luo, J., Zhang, Y. & Lin, L. MiR-139-5p, miR-940 and miR-193a-5p inhibit the growth of hepatocellular carcinoma by targeting SPOCK1. J. Cell. Mol. Med. 23, 2475–2488 (2019).

59. Li, C. & Balazsi, G. A landscape view on the interplay between EMT and cancer metastasis. npj Syst. Biol. Appl. 4, 34 (2018).

60. Kitamura, K. et al. Gingival overgrowth induced by cyclosporin A in rats. Arch. Oral Biol. 35, 483–486 (1990).

61. Morisaki, I., Mihara, J., Kato K., Kitamura K., Adashi, C., Sobue, S., Hamada, S. Phenytoin-induced gingival overgrowth in rats infected with streptococcus sorbinus. Arch oral Biol. 35, 753–758 (1990).

62. Takano, A. et al. Angiopoietin-like protein 2 is a positive regulator of osteoblast differentiation. Metabolism. 69, 157–170 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る