リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Purified EDEM3 or EDEM1 alone produces determinant oligosaccharide structures from M8B in mammalian glycoprotein ERAD」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Purified EDEM3 or EDEM1 alone produces determinant oligosaccharide structures from M8B in mammalian glycoprotein ERAD

George, Ginto Ninagawa, Satoshi Yagi, Hirokazu Furukawa, Jun-ichi Hashii, Noritaka Ishii-Watabe, Akiko Deng, Ying Matsushita, Kazutoshi Ishikawa, Tokiro Mamahit, Yugoviandi P Maki, Yuta Kajihara, Yasuhiro Kato, Koichi Okada, Tetsuya Mori, Kazutoshi 神戸大学

2021.10.26

概要

Sequential mannose trimming of N-glycan, from M9 to M8B and then to oligosaccharides exposing the α1,6-linked mannosyl residue (M7A, M6, and M5), facilitates endoplasmic reticulum-associated degradation of misfolded glycoproteins (gpERAD). We previously showed that EDEM2 stably disulfide-bonded to the thioredoxin domain-containing protein TXNDC11 is responsible for the first step (George et al., 2020). Here, we show that EDEM3 and EDEM1 are responsible for the second step. Incubation of pyridylamine-labeled M8B with purified EDEM3 alone produced M7 (M7A and M7C), M6, and M5. EDEM1 showed a similar tendency, although much lower amounts of M6 and M5 were produced. Thus, EDEM3 is a major α1,2-mannosidase for the second step from M8B. Both EDEM3 and EDEM1 trimmed M8B from a glycoprotein efficiently. Our confirmation of the Golgi localization of MAN1B indicates that no other α1,2-mannosidase is required for gpERAD. Accordingly, we have established the entire route of oligosaccharide processing and the enzymes responsible.

この論文で使われている画像

参考文献

Aikawa J, Matsuo I, Ito Y. 2012. In vitro mannose trimming property of human ER α-1,2 mannosidase I.

Glycoconjugate Journal 29: 35–45. DOI: https://​doi.​org/​10.​1007/​s10719-​011-​9362-​1, PMID: 22160784

Avezov E, Frenkel Z, Ehrlich M, Herscovics A, Lederkremer GZ. 2008. Endoplasmic reticulum (ER) mannosidase I

is compartmentalized and required for N-­glycan trimming to Man5-­6GlcNAc2 in glycoprotein ER-­associated

degradation. Molecular Biology of the Cell 19: 216–225. DOI: https://​doi.​org/​10.​1091/​mbc.​e07-​05-​0505,

PMID: 18003979

Benyair R, Ogen-­Shtern N, Mazkereth N, Shai B, Ehrlich M, Lederkremer GZ. 2015. Mammalian ER mannosidase

I resides in quality control vesicles, where it encounters its glycoprotein substrates. Molecular Biology of the

Cell 26: 172–184. DOI: https://​doi.​org/​10.​1091/​mbc.​E14-​06-​1152, PMID: 25411339

Bindels DS, Haarbosch L, van Weeren L, Postma M, Wiese KE, Mastop M, Aumonier S, Gotthard G, Royant A,

Hink MA, Gadella TJ. 2017. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nature

Methods 14: 53–56. DOI: https://​doi.​org/​10.​1038/​nmeth.​4074, PMID: 27869816

Bukau B, Weissman J, Horwich A. 2006. Molecular chaperones and protein quality control. Cell 125: 443–451.

DOI: https://​doi.​org/​10.​1016/​j.​cell.​2006.​04.​014, PMID: 16678092

George, Ninagawa, et al. eLife 2021;10:e70357. DOI: https://​doi.​org/​10.​7554/​eLife.​70357

19 of 20

Biochemistry and Chemical Biology | Cell Biology

Research advance

Falcón-­Pérez JM, Nazarian R, Sabatti C, Dell’Angelica EC. 2005. Distribution and dynamics of Lamp1-­containing

endocytic organelles in fibroblasts deficient in BLOC-­3. Journal of Cell Science 118: 5243–5255. DOI: https://​

doi.​org/​10.​1242/​jcs.​02633, PMID: 16249233

Furukawa J, Shinohara Y, Kuramoto H, Miura Y, Shimaoka H, Kurogochi M, Nakano M, Nishimura S-­I. 2008.

Comprehensive approach to structural and functional glycomics based on chemoselective glycoblotting and

sequential tag conversion. Analytical Chemistry 80: 1094–1101. DOI: https://​doi.​org/​10.​1021/​ac702124d,

PMID: 18205388

George G, Ninagawa S, Yagi H, Saito T, Ishikawa T, Sakuma T, Yamamoto T, Imami K, Ishihama Y, Kato K,

Okada T, Mori K. 2020. EDEM2 stably disulfide-­bonded to TXNDC11 catalyzes the first mannose trimming step

in mammalian glycoprotein ERAD. eLife 9: e53455. DOI: https://​doi.​org/​10.​7554/​eLife.​53455, PMID: 32065582

Gonzalez DS, Karaveg K, Vandersall-­Nairn AS, Lal A, Moremen KW. 1999. Identification, expression, and

characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes

the first mannose trimming step in mammalian Asn-­linked oligosaccharide biosynthesis. The Journal of

Biological Chemistry 274: 21375–21386. DOI: https://​doi.​org/​10.​1074/​jbc.​274.​30.​21375, PMID: 10409699

Horimoto S, Ninagawa S, Okada T, Koba H, Sugimoto T, Kamiya Y, Kato K, Takeda S, Mori K. 2013. The unfolded

protein response transducer ATF6 represents a novel transmembrane-­type endoplasmic reticulum-­associated

degradation substrate requiring both mannose trimming and SEL1L protein. The Journal of Biological

Chemistry 288: 31517–31527. DOI: https://​doi.​org/​10.​1074/​jbc.​M113.​476010, PMID: 24043630

Hosokawa N, Tremblay LO, You Z, Herscovics A, Wada I, Nagata K. 2003. Enhancement of endoplasmic

reticulum (ER) degradation of misfolded Null Hong Kong alpha1-­antitrypsin by human ER mannosidase I. The

Journal of Biological Chemistry 278: 26287–26294. DOI: https://​doi.​org/​10.​1074/​jbc.​M303395200, PMID:

12736254

Lamriben L, Oster ME, Tamura T, Tian W, Yang Z, Clausen H, Hebert DN. 2018. EDEM1’s mannosidase-­like

domain binds ERAD client proteins in a redox-­sensitive manner and possesses catalytic activity. The Journal of

Biological Chemistry 293: 13932–13945. DOI: https://​doi.​org/​10.​1074/​jbc.​RA118.​004183, PMID: 30021839

Mast SW, Diekman K, Karaveg K, Davis A, Sifers RN, Moremen KW. 2005. Human EDEM2, a novel homolog of

family 47 glycosidases, is involved in ER-­associated degradation of glycoproteins. Glycobiology 15: 421–436.

DOI: https://​doi.​org/​10.​1093/​glycob/​cwi014, PMID: 15537790

Nadanaka S, Yoshida H, Kano F, Murata M, Mori K. 2004. Activation of mammalian unfolded protein response is

compatible with the quality control system operating in the endoplasmic reticulum. Molecular Biology of the

Cell 15: 2537–2548. DOI: https://​doi.​org/​10.​1091/​mbc.​e03-​09-​0693, PMID: 15020717

Ninagawa S, Okada T, Takeda S, Mori K. 2011. SEL1L is required for endoplasmic reticulum-­associated

degradation of misfolded luminal proteins but not transmembrane proteins in chicken DT40 cell line. Cell

Structure and Function 36: 187–195. DOI: https://​doi.​org/​10.​1247/​csf.​11018, PMID: 21857145

Ninagawa S, Okada T, Sumitomo Y, Kamiya Y, Kato K, Horimoto S, Ishikawa T, Takeda S, Sakuma T, Yamamoto T,

Mori K. 2014. EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step.

The Journal of Cell Biology 206: 347–356. DOI: https://​doi.​org/​10.​1083/​jcb.​201404075, PMID: 25092655

Ninagawa S, Okada T, Sumitomo Y, Horimoto S, Sugimoto T, Ishikawa T, Takeda S, Yamamoto T, Suzuki T,

Kamiya Y, Kato K, Mori K. 2015. Forcible destruction of severely misfolded mammalian glycoproteins by the

non-­glycoprotein ERAD pathway. The Journal of Cell Biology 211: 775–784. DOI: https://​doi.​org/​10.​1083/​jcb.​

201504109, PMID: 26572623

Ninagawa S, George G, Mori K. 2021. Mechanisms of productive folding and endoplasmic reticulum-­associated

degradation of glycoproteins and non-­glycoproteins. Biochimica et Biophysica Acta. General Subjects 1865:

129812. DOI: https://​doi.​org/​10.​1016/​j.​bbagen.​2020.​129812, PMID: 33316349

Pan S, Wang S, Utama B, Huang L, Blok N, Estes MK, Moremen KW, Sifers RN. 2011. Golgi localization of

ERManI defines spatial separation of the mammalian glycoprotein quality control system. Molecular Biology of

the Cell 22: 2810–2822. DOI: https://​doi.​org/​10.​1091/​mbc.​E11-​02-​0118, PMID: 21697506

Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold

Spring Harbor Laboratory Press, Cold Spring Harbor.

Sato Y, Nadanaka S, Okada T, Okawa K, Mori K. 2011. Luminal domain of ATF6 alone is sufficient for sensing

endoplasmic reticulum stress and subsequent transport to the Golgi apparatus. Cell Structure and Function 36:

35–47. DOI: https://​doi.​org/​10.​1247/​csf.​10010, PMID: 21150130

Shenkman M, Ron E, Yehuda R, Benyair R, Khalaila I, Lederkremer GZ. 2018. Mannosidase activity of EDEM1 and

EDEM2 depends on an unfolded state of their glycoprotein substrates. Communications Biology 1: 172. DOI:

https://​doi.​org/​10.​1038/​s42003-​018-​0174-​8, PMID: 30374462

Takahashi N, Kato K. 2003. GALXY(Glycoanalysis by the Three Axes of MS and Chromatography): a Web

Application that Assists Structural Analyses of N-­Glycans. Trends in Glycoscience and Glycotechnology 15:

235–251. DOI: https://​doi.​org/​10.​4052/​tigg.​15.​235

Uematsu R, Furukawa J, Nakagawa H, Shinohara Y, Deguchi K, Monde K, Nishimura S-­I. 2005. High throughput

quantitative glycomics and glycoform-­focused proteomics of murine dermis and epidermis. Molecular &

Cellular Proteomics 4: 1977–1989. DOI: https://​doi.​org/​10.​1074/​mcp.​M500203-​MCP200, PMID: 16170054

Yu S, Ito S, Wada I, Hosokawa N. 2018. ER-­resident protein 46 (ERp46) triggers the mannose-­trimming activity of

ER degradation-­enhancing α-mannosidase-­like protein 3 (EDEM3). The Journal of Biological Chemistry 293:

10663–10674. DOI: https://​doi.​org/​10.​1074/​jbc.​RA118.​003129, PMID: 29784879

Zacharias DA, Violin JD, Newton AC, Tsien RY. 2002. Partitioning of lipid-­modified monomeric GFPs into

membrane microdomains of live cells. Science 296: 913–916. DOI: https://​doi.​org/​10.​1126/​science.​1068539,

PMID: 11988576

George, Ninagawa, et al. eLife 2021;10:e70357. DOI: https://​doi.​org/​10.​7554/​eLife.​70357

20 of 20

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る