リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Homeolog-specific activation of genes for heat acclimation in the allopolyploid grass Brachypodium hybridum」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Homeolog-specific activation of genes for heat acclimation in the allopolyploid grass Brachypodium hybridum

高萩 航太郎 横浜市立大学

2020.03.25

概要

Background
Allopolyploid plants often show wider environmental tolerances than their ancestors; this is expected to be due to the merger of multiple distinct genomes with a fixed heterozygosity. The complex homoeologous gene expression could have been evolutionarily advantageous for the adaptation of allopolyploid plants. Despite multiple previous studies reporting homoeolog-specific gene expression in allopolyploid species, there are no clear examples of homoeolog-specific function in acclimation to a long-term stress condition.

Results
We found that the allopolyploid grass Brachypodium hybridum and its ancestor Brachypodium stacei show long-term heat stress tolerance, unlike its other ancestor, Brachypodium distachyon. To understand the physiological traits of B. hybridum, we compared the transcriptome of the 3 Brachypodium species grown under normal and heat stress conditions. We found that the expression patterns of approximately 26% and approximately 38% of the homoeolog groups in B. hybridum changed toward nonadditive expression and nonancestral expression, respectively, under normal condition. Moreover, we found that B. distachyon showed similar expression patterns between normal and heat stress conditions, whereas B. hybridum and B. stacei significantly altered their transcriptome in response to heat after 3 days of stress exposure, and homoeologs that were inherited from B. stacei may have contributed to the transcriptional stress response to heat in B. hybridum. After 15 days of heat exposure, B. hybridum and B. stacei maintained transcriptional states similar to those under normal conditions. These results suggest that an earlier response to heat that was specific to homoeologs originating from B. stacei contributed to cellular homeostasis under long-term heat stress in B. hybridum.

Conclusions
Our results provide insights into different regulatory events of the homoeo-transcriptome that are associated with stress acclimation in allopolyploid plants.

参考文献

1. Soltis PS, Soltis DE. Polyploidy and Genome Evolution. Berlin, New York: Springer Verlag; 2012.

2. Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet 2005;6(11):836–46.

3. Leitch AR, Leitch IJ. Genomic plasticity and the diversity of polyploid plants. Science 2008;320(5875):481–3.

4. Bowman JL, Floyd SK, Sakakibara K. Green genescomparative genomics of the green branch of life. Cell 2007;129(2):229–34.

5. Adams KL, Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol 2005;8(2):135–41.

6. Segraves KA. The effects of genome duplications in a community context. New Phytol 2017;215(1):57–69.

7. Bowers JE, Chapman BA, Rong J et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003;422(6930):433–8.

8. Otto SP. The evolutionary consequences of polyploidy. Cell 2007;131(3):452–62.

9. Jiao Y, Wickett NJ, Ayyampalayam S et al. Ancestral polyploidy in seed plants and angiosperms. Nature 2011;473(7345):97–100.

10. Soltis PS, Soltis DE. The role of hybridization in plant speciation. Annu Rev Plant Biol 2009;60(1):561–88.

11. Fawcett JA, Maere S, Van de Peer Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci 2009;106(14):5737–42.

12. Vanneste K, Baele G, Maere S et al. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res 2014;24(8):1334–47.

13. Chen ZJ. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 2010;15(2):57–71.

14. Chen ZJ. Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 2013;14(7):471– 82.

15. Chen ZJ, Birchler JA. Polyploid and Hybrid Genomics. Ames, Iowa: Wiley-Blackwell; 2013.

16. Solhaug EM, Ihinger J, Jost M et al. Environmental regulation of heterosis in the allopolyploid Arabidopsis suecica. Plant Physiol 2016;170(4):2251–63.

17. Maricle BR, Crosier JJ, Bussiere BC et al. Respiratory enzyme activities correlate with anoxia tolerance in salt marsh grasses. J Exp Mar Biol Ecol 2006;337(1):30–37.

18. Ainouche ML, Fortune PM, Salmon A et al. Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invasions 2009;11(5):1159–73.

19. Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 2007;316(5833):1862–6.

20. Yang C, Zhao L, Zhang H et al. Evolution of physiological responses to salt stress in hexaploid wheat. Proc Natl Acad Sci 2014;111(32):11882–7.

21. Stebbins GL. Variation and Evolution in Plants. New York: Columbia University Press; 1950.

22. Stebbins GL. Chromosomal Evolution in Higher Plants. Reading, Massachusetts: Addison-Wesley; 1971.

23. Yoo MJ, Liu X, Pires JC et al. Nonadditive gene expression in polyploids. Annu Rev Genet 2014;48(1):485–517.

24. Wang J, Tian L, Lee HS et al. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 2006;172(1):507–17.

25. Chague V, Just J, Mestiri I et al. Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New Phytol 2010;187(4):1181–94.

26. Kim ED, Chen ZJ. Unstable transcripts in Arabidopsis allotetraploids are associated with nonadditive gene expression in response to abiotic and biotic stresses. PLoS One 2011;6(8):e24251.

27. Grover CE, Gallagher JP, Szadkowski EP et al. Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol 2012;196(4):966–71.

28. Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 2013;110(2):99–104.

29. Yoo MJ, Szadkowski E, Wendel JF. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 2013;110(2):171–80.

30. Zhang D, Pan Q, Tan C et al. Genome-wide gene expressions respond differently to A-subgenome origins in Brassica napus synthetic hybrids and natural allotetraploid. Front Plant Sci 2016;7:1508.

31. Bardil A, de Almeida JD, Combes MC et al. Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature. New Phytol 2011;192(3):760–74.

32. Li A, Liu D, Wu J et al. mRNA and Small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 2014;26(5):1878–900.

33. Zhang H, Gou X, Zhang A et al. Transcriptome shock invokes disruption of parental expression-conserved genes in tetraploid wheat. Sci Rep 2016;6(1):26363.

34. Akama S, Shimizu-Inatsugi R, Shimizu KK et al. Genomewide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid Arabidopsis. Nucleic Acids Res 2014;42(6):e46-.

35. Paape T, Hatakeyama M, Shimizu-Inatsugi R et al. Conserved but attenuated parental gene expression in allopolyploids: constitutive zinc hyperaccumulation in the allotetraploid Arabidopsis kamchatica. Mol Biol Evol 2016;33(11):2781–800.

36. Lopez-Alvarez D, Lopez-Herranz ML, Betekhtin A et al. A DNA barcoding method to discriminate between the model plant Brachypodium distachyon and its close relatives B. stacei and B. hybridum (Poaceae). PLoS One 2012;7(12):e51058.

37. Lopez-Alvarez D, Manzaneda AJ, Rey PJ et al. Environmental niche variation and evolutionary diversification of the Brachypodium distachyon grass complex species in their native circum-Mediterranean range. Am J Bot 2015;102(7):1073–88.

38. Catalan P, Muller J, Hasterok R et al. Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann Bot 2012;109(2):385–405.

39. Catalan P, Chalhoub B, Chochois V et al. Update on the genomics and basic biology of Brachypodium. Trends Plant Sci 2014;19(7):414–8.

40. Catalan P, Lopez-Alvarez D, Bellosta C et al. Updated taxonomic descriptions, iconography, and habitat preferences of Brachypodium distachyon, B. stacei, and B. hybridum (Poaceae). An Jardin Bot Madrid 2016;73(1):e028

41. Betekhtin A, Jenkins G, Hasterok R. Reconstructing the evolution of Brachypodium genomes using comparative chromosome painting. PLoS One 2014;9(12):e115108.

42. Vogel J. Genetics and Genomics of Brachypodium. New York: Springer Science+Business Media; 2016.

43. Dinh Thi VH, Coriton O, Le Clainche I et al. Recreating stable Brachypodium hybridum allotetraploids by uniting the divergent genomes of B. distachyon and B. stacei. PLoS One 2016;11(12):e0167171.

44. Schramm F, Ganguli A, Kiehlmann E et al. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 2006;60(5):759–72.

45. Charng YY, Liu HC, Liu NY et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 2007;143(1):251– 62.

46. Chauhan H, Khurana N, Agarwal P et al. Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics 2011;286(2):171–87.

47. Lowry E, Lester SE. The biogeography of plant reproduction: potential determinants of species’ range sizes. J Biogeography 2006;33(11):1975–82.

48. te Beest M, Le Roux JJ, Richardson DM et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot (Lond) 2012;109(1):19–45.

49. Marchant DB, Soltis DE, Soltis PS. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytol 2016;212(3):708–18.

50. Bakker EG, Montgomery B, Nguyen T et al. Strong population structure characterizes weediness gene evolution in the invasive grass species Brachypodium distachyon. Mol Ecol 2009;18(12):2588–601.

51. Meimberg H, Rice KJ, Milan NF et al. Multiple origins promote the ecological amplitude of allopolyploid Aegilops (Poaceae). Am J Bot 2009;96(7):1262–73.

52. Song LL, Jiang YL, Zhao HQ et al. Acquired thermotolerance in plants. Plant Cell Tiss Organ Cult 2012;111(3):265–76.

53. Driedonks N, Xu J, Peters JL et al. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 2015;6:999.

54. Jacob P, Hirt H, Bendahmane A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 2017;15(4):405–14.

55. Ohama N, Sato H, Shinozaki K et al. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 2017;22(1):53–65.

56. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30(15):2114–20.

57. Phytozome (Brachypodium distachyon v3.1). http://genome.jgi. doe.gov/pages/dynamicOrganismDownload.jsf?organism= Bdistachyon. Accessed 19 Jul 2016.

58. Li H, Handsaker B, Wysoker A et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25(16):2078–9.

59. Quinlan AR. BEDTools: the Swiss-Army tool for genome feature analysis. Curr Protoc Bioinformatics 2014;47:11.12.1–34.

60. Koboldt DC, Chen K, Wylie T et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 2009;25(17):2283–5.

61. Cingolani P, Platts A, Wang le L et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012;6(2):80–92.

62. Wang D, Zhang Y, Zhang Z et al. KaKs˙Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics, Proteomics & Bioinformatics 2010;8(1):77–80.

63. Zhang Z, Li J, Yu J. Computing Ka and Ks with a consideration of unequal transitional substitutions. BMC Evol Biol 2006;6(1):44.

64. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science 2000;290(5494):1151–5.

65. He N, Zhang C, Qi X et al. Draft genome sequence of the mulberry tree Morus notabilis. Nat Comms 2013;4:2445.

66. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30(7):923–30.

67. Schleinitz D, Distefano JK, Kovacs P. Targeted SNP genotyping using the TaqManR assay. Methods Mol Biol 2011;700:77– 87.

68. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15(12):550.

69. Koda S, Onda Y, Matsui H et al. Diurnal transcriptome and gene network represented through sparse modeling in Brachypodium distachyon. Front Plant Sci 2017;8:2055.

70. Phytozome (Arabidopsis thaliana TAIR10). http://genome.jgi. doe.gov/pages/dynamicOrganismDownload.jsf?organism= Athaliana. Accessed 12 Oct 2016.

71. Phytozome (Oryza sativa v7 JGI). http://genome.jgi.doe.gov/ pages/dynamicOrganismDownload.jsf?organism=Osativa. Accessed 12 Oct 2016.

72. Conesa A, Gotz S, Garcia-Gomez JM et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21(18): 3674–6.

73. Supek F, Bosnjak M, Skunca N et al. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 2011;6(7):e21800.

74. Takahagi K, Inoue K, Shimizu M et al. Supporting data for “homoeolog-specific activation of genes for heat acclimation in the allopolyploid grass Brachypodium hybridum.” GigaScience Database 2018. http://dx.doi.org/10.5524/100413.

75. Takahagi K, Inoue K, Shimizu M et al. Detection of allele frequencies in the cDNA sample. Protocols.io 2018. dx.doi.org/10.17504/protocols.io.nafdabn.

参考文献をもっと見る