リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Measurement of the radon concentration in purified water in the Super-Kamiokande IV detector」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Measurement of the radon concentration in purified water in the Super-Kamiokande IV detector

Nakano, Y. Hokama, T. Matsubara, M. Miwa, M. Nakahata, M. Nakamura, T. Sekiya, H. Takeuchi, Y. Tasaka, S. Wendell, R. A. 神戸大学

2020.10.11

概要

The radioactive noble gas radon can be a serious background source in the underground particle physics experiments studying processes that deposit energy comparable to its decay products. Low energy solar neutrino measurements at Super-Kamiokande suffer from these backgrounds and therefore require precise characterization of the radon concentration in the detector's ultra-pure water. For this purpose, we have developed a measurement system consisting of a radon extraction column, a charcoal trap, and a radon detector. In this article we discuss the design, calibration, and performance of the radon extraction column. We also describe the design of the measurement system and evaluate its performance, including its background. Using this system we measured the radon concentration in Super-Kamiokande's water between May 2014 and October 2015. The measured radon concentration in the supply lines of the water circulation system was 1.74±0.14 mBq/m(3) and in the return line was 9.06±0.58 mBq/m(3). Water sampled from the center region of the detector itself had a concentration of < 0.23 mBq/m(3) (95% C.L.) and water sampled from the bottom region of the detector had a concentration of 2.63±0.22mBq/m(3).

この論文で使われている画像

参考文献

[1] Ziro Maki, Masami Nakagawa, Shoichi Sakata, Remarks on the Unified Model of Elementary Particles, Prog.

Theor. Phys. 28 (1962) 870.

[2] B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Soviet Physics JETP

26 (1968) 984–988.

[3] S. Fukuda, et al., Solar 8 B and hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data, Phys.

Rev. Lett. 86 (2001) 5651.

[4] Q.R. Ahmad, et al., Measurement of the Rate of νe + d → p + p + e− Interactions Produced by 8 B Solar Neutrinos

at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301.

[5] Q.R. Ahmad, et al., Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the

Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301.

[6] J. Hosaka, et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001.

[7] J.P. Cravens, et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002.

[8] K. Abe, et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010.

[9] K. Abe, et al., Solar neutrino measurements in Super-Kamiokande-IV, Phys. Rev. D 94 (2016) 052010.

[10] S.P. Mikheyev and A.Y. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy,

Sov. J. Nucl. Phys. 42 (1985) 913–917.

[11] L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369.

[12] A. Renshaw, et al., First Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation, Phys. Rev. Lett. 112

(2014) 091805.

[13] Y. Takeuchi, et al., Measurement of radon concentrations at Super-Kamiokande, Phys. Lett. B 452 (1999) 418–424.

[14] S. Fukuda, et al., The Super-Kamiokande detector, Nucl. Instrum. Meth. Phys. Res. Sect. A 501 (2003) 418–462.

[15] S. Yamada, et al,. Commissioning of the new electronics and online system for the Super-Kamiokande experiment,

IEEE Trans. Nucl. Sci. 57 (2010) 428–432.

[16] K. Abe, et al., Calibration of the Super-Kamiokande, Nucl. Instrum. Meth. Phys. Res. Sect. A 737 (2014) 253–272.

[17] B. Aharmin, et al., Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501.

21

[18] B.T. Cleveland, et al., Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector,

Astrophys. J. 496 (1998) 505–526.

[19] J.N. Abdurashitov, et al., Measurement of the solar neutrino capture rate with gallium metal. III. Results for the

2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807.

[20] M. Altmann, et al., Complete results for five years of GNO solar neutrino observations, Phys. Lett. B 616 (2005)

174–190.

[21] K.S. Hirata, et al., Observation of 8 B solar neutrinos in the Kamiokande-II detector, Phys. Rev. Lett. 63 (1989) 16.

[22] Y. Fukuda, et al., Solar Neutrino Data Covering Solar Cycle 22, Phys. Rev. Lett. 77 (1996) 1683.

[23] B. Aharmim, et al., Electron energy spectra, fluxes, and day-night asymmetries of 8 B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C 72

(2005) 055502.

[24] B. Aharmim, et al., Measurement of the νe and total 8 B solar neutrino fluxes with the Sudbury Neutrino Observatory

phase-III data set, Phys. Rev. C 87 (2013) 015502.

[25] G. Bellini, et al., Measurement of the solar 8 B neutrino rate with a liquid scintillator target and 3 MeV energy

threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006.

[26] G. Bellini, et al., First Evidence of pep Solar Neutrinos by Direct Detection in Borexino, Phys. Rev. Lett. 108

(2012) 051302.

[27] G. Bellini, et al., Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy, Phys. Rev. D 89

(2014) 112007.

[28] G. Bellini, et al., Neutrinos from the primary proton-proton fusion process in the Sun, Nature 512 (2014) 383–386.

[29] M. Agostini, et al., Simultaneous precision spectroscopy of pp, 7 Be, and pep solar neutrinos with Borexino PhaseII, Phys. Rev. D 100 (2019) 082004.

[30] S. Abe, et al., Measurement of the 8 B solar neutrino flux with the KamLAND liquid scintillator detector, Phys.

Rev. C 84 (2011) 035804.

[31] A. Gando, et al., 7 Be solar neutrino measurement with KamLAND, Phys. Rev. C 92 (2015) 055808.

[32] P.C. de Holanda and A.Yu. Smirnov, Homestake result, sterile neutrinos, and low energy solar neutrino experiments,

Phys. Rev. D 69 (2004) 113002.

[33] P.C. de Holanda and A.Yu. Smirnov, Solar neutrino spectrum, sterile neutrinos, and additional radiation in the

Universe, Phys. Rev. D 83 (2011) 113011.

[34] Ilidio Lopes, The Sterile-Active Neutrino Flavor Model: The Imprint of Dark Matter on the Electron Neutrino

Spectra, Astrophys. J. 869 (2018) 112.

[35] V. Barger, Patrick Huber, and Danny Marfatia, Solar Mass-Varying Neutrino Oscillations, Phys. Rev. Lett. 95

(2005) 211802.

[36] A. Friedland, et al., Solar neutrinos as probes of neutrino-matter interactions, Phys. Lett. B 594 (2004) 347–354.

[37] O.G. Miranda, et al., Are solar neutrino oscillations robust?, J. High Energy Phys., 10 (2006) 008.

[38] Y. Takeuchi, et al., Development of high sensitivity radon detectors, Nucl. Instrum. Meth. Phys. Res. Sect. A 421

(1999) 334–341.

[39] H. Sekiya, Quest for the lowest-energy neutrinos in Super-Kamiokande, AIP Conf. Proc. 1672 (2015) 080001.

[40] I. Blevis, et al., Measurement of 222 Rn dissolved in water at the Subdury Neutrino Observatory, Nucl. Instrum.

Meth. Phys. Res. Sect. A 517 (2003) 139–153.

[41] T.C. Andersen, et al., Measurement of radium concentration in water with Mn-coated beads at the Sudbury Neutrino

Observatory, Nucl. Instrum. Meth. Phys. Res. Sect. A 501 (2003) 399–417.

[42] B. Aharmin, et al., High sensitivity measurement of 224 Ra and 226 Ra in water with an improved hydrous titanium

oxide technique at the Sudbury Neutrino Observatory, Nucl. Instrum. Meth. Phys. Res. Sect. A 604 (2009) 531–535.

[43] M. Balata, et al., The water purification system for the low background counting test facility of the Borexino

experiment at Gran Sasso, Nucl. Instrum. Meth. Phys. Res. Sect. A 370 (1996) 605–608.

[44] H. Simgen, et al., A new system for the 222 Rn and 226 Ra assay of water and results in the Borexino project, Nucl.

Instrum. Meth. Phys. Res. Sect. A 497 (2003) 407–413.

[45] M.C. Chu, et al., The radon monitoring system in Daya Bay Reactor Neutrino Experiment, Nucl. Instrum. Meth.

Phys. Res. Sect. A 808 (2016) 156–164.

[46] Y.P. Zhang, et al., The development of 222 Rn detectors for JUNO prototype, Radiat. Detect. Technol. Methods 2

(2018) 5.

[47] L. Xie, et al., Developing the radium measurement system for JUNO’s water Cherenkov detector,

arXiv:1906.06895.

[48] C. Mitsuda, et al., Development of super-high sensitivity radon detector for the Super-Kamiokande detector, Nucl.

Instrum. Meth. Phys. Res. Sect. A 497 (2003) 414–428.

[49] P. Kotrappa, S.K. Dua, P.C. Gupta, Y.S. Mayya, Electret - A New Tool for Measuring Concentrations of Radon and

Thoron in Air, Health Phys. 46 (1981) 35.

[50] Y. Nakano, et al., Measurement of radon concentration in Super-Kamiokande’s buffer gas, Nucl. Instrum. Meth.

22

Phys. Res. Sect. A 867 (2017) 108–114.

[51] K. Hosokawa, et al., Development of a high-sensitivity 80 L radon detector for purified gases, Prog. Theor. Exp.

Phys. 033H01 (2015).

[52] J. Steyn, Absolute Standardization of Beta-emitting Isotopes with a Liquid Scintillation Counter, Proc. Phys. Soci.

Sec. A 69 (1956) 865.

[53] M. Noguchi, Special Applications (2), Measurements of Radon Activity, RADIOISOTOPES 24 (1975) 745–748.

[54] Yumi Yasuoka, et al., Determination of Radon Concentration in Water Using Liquid Scintillation Counter, RADIOISOTOPES 53 (2004) 123–131.

[55] S. Maurer, A Mersmann and W. Peukert, Henry coefficients of adsorption predicted from solid Hamaker constants,

Chem. Eng. Sci. 56 (2001) 3443–3453.

[56] Hardy Simgen, Adsorption techniques for gas purification, AIP Conf. Proc. 785 (2005) 121.

[57] K. Abe, et al., Radon removal from gaseous xenon with activated charcoal, Nucl. Instrum. Meth. Phys. Res. Sect.

A 661 (2012) 50–57.

[58] D.S. Akerlib, et al., Chromatographic separation of radioactive noble gases from xenon, Astropart. Phys. 97 (2018)

80–87.

[59] M. Ikeda, et al., Absorption and desorption of radon in argon gas, and the development of low level radon concentration measurement method, RADIOISOTOPES, 59 (2010) 29–36.

[60] M. Shimo, et al., Experimental Study of Charcoal Adsorptive Technique for Measurement of Radon in Air, J. Atom.

Energy Soci. Jap. Vol. 25 (1983) 562–570.

[61] T. Iida, et al.,An Electrostatic Integrating 222Rn Monitor with Cellulose Nitrate Film for Environmental Monitoring, Health Phys. 54 (1988) 139.

[62] E. Blaufuss, et al., 16 N as a calibration source for Super-Kamiokande, Nucl. Instrum. Meth. Phys. Res. Sect. A 458

(2001) 638–649.

[63] Y. Nakano, 8 B solar neutrino spectrum measurement using Super-Kamiokande IV, PhD thesis, University of Tokyo

(2016), available at http://www-sk.icrr.u-tokyo.ac.jp/sk/publications/index-e.html (accessed on October 9th, 2019).

[64] Y. Nakano for the Super-Kamiokande Collaboration, Radon background study in Super-Kamiokande, J. Phys.

Conf. Ser. 888 (2017) 012191.

[65] K. Abe, et al., Hyper-Kamiokande Design Report, arXiv:1805.04163.

23

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る