リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「FKRP mutations cause congenital muscular dystrophy 1C and limb-girdle muscular dystrophy 2I in Asian patients」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

FKRP mutations cause congenital muscular dystrophy 1C and limb-girdle muscular dystrophy 2I in Asian patients

Awano, Hiroyuki Saito, Yoshihiko Shimizu, Mamiko Sekiguchi, Kenji Niijima, Shinichi Matsuo, Masafumi Maegaki, Yoshihiro Izumi, Isho Kikuchi, Chiya Ishibashi, Masato Okazaki, Tetsuya Komaki, Hirofumi Iijima, Kazumoto Nishino, Ichizo 神戸大学

2021.08.28

概要

Mutation in the fukutin-related protein (FKRP) gene causes alpha-dystroglycanopathies, a group of autosomal recessive disorders associated with defective glycosylated alpha-dystroglycan (α-DG). The disease phenotype shows a broad spectrum, from the most severe congenital form involving brain and eye anomalies to milder limb-girdle form. FKRP-related alpha-dystroglycanopathies are common in European countries. However, a limited number of patients have been reported in Asian countries. Here, we presented the clinical, pathological, and genetic findings of nine patients with FKRP mutations identified at a single muscle repository center in Japan. Three and six patients were diagnosed with congenital muscular dystrophy type 1C and limb-girdle muscular dystrophy 2I, respectively. None of our Asian patients showed the most severe form of alpha-dystroglycanopathy. While all patients showed a reduction in glycosylated α-DG levels, to variable degrees, these levels did not correlate to clinical severity. Fifteen distinct pathogenic mutations were identified in our cohort, including five novel mutations. Unlike in the populations belonging to European countries, no common mutation was found in our cohort.

この論文で使われている画像

参考文献

1.

Brockington M, Blake DJ, Prandini P, Brown SC, Torelli S, Benson MA, et al.

Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital

muscular dystrophy with secondary laminin alpha2 deficiency and abnormal

glycosylation of alpha-dystroglycan. Am J Hum Genet 2001;69(6):1198–209.

https://doi.org/10.1086/324412.

2.

Kanagawa M, Kobayashi K, Tajiri M, Manya H, Kuga A, Yamaguchi Y, et al.

Identification of a post-translational modification with ribitol-phosphate and its defect

in

muscular

dystrophy.

Cell

Rep

2016;14(9):2209–23.

https://doi.org/10.1016/j.celrep.2016.02.017.

3.

Ervasti

JM,

Campbell

dystrophin-glycoprotein

KP.

complex.

Membrane

organization

Cell

of

the

1991;66(6):1121–31.

https://doi.org/10.1016/0092-8674(91)90035-w.

4.

Michele

post-translational

DE,

Campbell

processing

and

KP.

Dystrophin-glycoprotein

dystroglycan

function.

Biol

complex:

Chem

2003;278(18):15457–60. https://doi.org/10.1074/jbc.R200031200.

5.

Kanagawa M, Toda T. The genetic and molecular basis of muscular dystrophy:

roles of cell-matrix linkage in the pathogenesis. J Hum Genet 2006;51(11):915–26.

18

https://doi.org/10.1007/s10038-006-0056-7.

6.

Brochkington M, Yuva Y, Prandini P, Brown SC, Torelli S, Benson MA, et al.

Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular

dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum

Mol Genet 2001;10(25):2851–9. https://doi.org/10.1093/hmg/10.25.2851.

7.

Beltran-Valero de Bernabe D, Voit T, Longman C, Steinbrecher A, Straub V,

Yuva Y, et al. Mutations in the FKRP gene can cause muscle-eye-brain disease and

Walker-Warburg

syndrome.

Med

Genet

2004;41(5):e61.

https://doi.org/10.1136/jmg.2003.013870.

8.

Van Reeuwijk J, Olderode-Berends MJ, Van den Elzen C, Brouwer OF,

Roscioli T, Van Pampus MG, et al. A homozygous FKRP start codon mutation is

associated with Walker-Warburg syndrome, the severe end of the clinical spectrum. Clin

Genet 2010;78(3):275–81. https://doi.org/10.1111/j.1399-0004.2010.01384.x.

9.

Topaloglu H, Brockington M, Yuva Y, Talim B, Haliloglu G, Blake D, et al.

FKRP gene mutations cause congenital muscular dystrophy, mental retardation, and

cerebellar

cysts.

Neurology

2003;60(6):988–92.

https://doi.org/10.1212/01.wnl.0000052996.14099.dc.

10.

Mercuri E, Brockington M, Straub V, Quijano-Roy S, Yuva Y, Herrmann R, et

19

al. Phenotypic spectrum associated with mutations in the fukutin-related protein gene.

Ann Neurol 2003;53(4):537–42. https://doi.org/10.1002/ana.10559.

11.

Straub V, Murphy A, Udd B, group Lws. 229th ENMC international workshop:

Limb girdle muscular dystrophies - Nomenclature and reformed classification Naarden,

the Netherlands, 17-19 March 2017. Neuromuscul Disord 2018;28(8):702-10. https://

10.1016/j.nmd.2018.05.007.

12.

Poppe M, Cree L, Bourke J, Eagle M, Anderson LVB, Birchall D, et al. The

phenotype of limb-girdle muscular dystrophy type 2I. Neurology 2003;60(8):1246–51.

https://doi.org/10.1212/01.wnl.0000058902.88181.3d.

13.

Bourteel H, Vermersch P, Cuisset JM, Maurage CA, Laforet P, Richard P, et al.

Clinical and mutational spectrum of limb-girdle muscular dystrophy type 2I in 11

French

patients.

Neurol

Neurosurg

Psychiatry

2009;80(12):1405–8.

https://doi.org/10.1136/jnnp.2007.141804.

14.

Richard I, Laurent JP, Cirak S, Vissing J; ENMC FKRP Study Group. 216th

ENMC international workshop: Clinical readiness in FKRP related myopathies January

15-17, 2016 Naarden, The Netherlands. Neuromuscul Disord 2016;26(10):717–24.

https://doi.org/10.1016/j.nmd.2016.08.012.

15.

Sveen ML, Schwartz M, Vissing J. High prevalence and phenotype-genotype

20

correlations of limb girdle muscular dystrophy type 2I in Denmark. Ann Neurol

2006;59(5):808–15. https://doi.org/10.1002/ana.20824.

16.

Hanisch F, Grimm D, Zierz S, Deschauer M. Frequency of the FKRP mutation

c.826C>A in isolated hyperCKemia and in limb girdle muscular dystrophy type 2 in

German

patients.

Neurol

2010;257(2):300–1.

https://doi.org/10.1007/s00415-009-5349-2.

17.

Liang WC, Hayashi YK, Ogawa M, Wang CH, Huang WT, Nishino I, et al.

Limb-girdle muscular dystrophy type 2I is not rare in Taiwan. Neuromuscul Disord

2013;23(8):675–81. https://doi.org/10.1016/j.nmd.2013.05.010.

18.

Fu X, Yang H, Wei C, Jiao H, Wang S, Yang Y, et al. FKRP mutations,

including a founder mutation, cause phenotype variability in Chinese patients with

dystroglycanopathies.

Hum

Genet

2016;61(12):1013–20.

https://doi.org/10.1038/jhg.2016.94.

19.

Hayashi YK, Ogawa M, Tagawa K, Noguchi S, Ishihara T, Nonaka I, et al.

Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular

dystrophy. Neurology 2001;57(1):115–21. https://doi.org/10.1212/wnl.57.1.115.

20.

Michele DE, Barresi R, Kanagawa M, Saito F, Cohn RD, Satz JS, et al.

Post-translational disruption of dystroglycan-ligand interactions in congenital muscular

21

dystrophies. Nature 2002;418(6896):417–22. https://doi.org/10.1038/nature00837.

21.

Nishikawa A, Mitsuhashi S, Miyata N, Nishino I. Targeted massively parallel

sequencing and histological assessment of skeletal muscles for the molecular diagnosis

of

inherited

muscle

disorders.

Med

Genet

2017;54(2):104–10.

https://doi.org/10.1136/jmedgenet-2016-104073.

22.

Brown SC, Torelli S, Brockington M, Yuva Y, Jimenez C, Feng L, et al.

Abnormalities in alpha-dystroglycan expression in MDC1C and LGMD2I muscular

dystrophies.

Am

Pathol

2004;164(2):727–37.

https://doi.org/10.1016/s0002-9440(10)63160-4.

23.

Matsumoto H, Hayashi YK, Kim DS, Ogawa M, Murakami T, Noguchi S, et al.

Congenital muscular dystrophy with glycosylation defects of alpha-dystroglycan in

Japan.

Neuromuscul

Disord

2005;15(5):342–8.

https://doi.org/10.1016/j.nmd.2005.01.009.

24.

Okazaki T, Matsuura K, Kasagi N, Adachi K, Kai M, Okubo M, et al.

Duchenne muscular dystrophy-like phenotype in an LGMD2I patient with novel FKRP

gene variants. Hum Genome Var 2020;7:12. https://doi.org/10.1038/s41439-020-0099-x.

25.

Fichna JP, Macias A, Piechota M, Korostynski M, Potulska-Chromik A,

Redowicz MJ, et al. Whole exome sequencing identifies novel pathogenic mutations

22

and putative phenotype-influencing variants in Polish limb-girdle muscular dystrophy

patients. Hum Genomics 2018;12(1):34. https://doi.org/10.1186/s40246-018-0167-1.

26.

Park HJ, Lee JH, Shin HY, Kim SM, Lee JH, Choi YC. First identification of

compound heterozygous FKRP mutations in a Korean patient with limb-girdle muscular

dystrophy. J Clin Neurol 2016;12(1):121–2. https://doi.org/10.3988/jcn.2016.12.1.121.

27.

Yoshioka M, Kobayashi K, Toda T. Novel FKRP mutations in a Japanese

MDC1C sibship clinically diagnosed with Fukuyama congenital muscular dystrophy.

Brain Dev 2017;39(10):869–72. https://doi.org/10.1016/j.braindev.2017.05.013.

28.

Nallamilli BRR, Chakravorty S, Kesari A, Tanner A, Ankala A, Schneider T, et

al. Genetic landscape and novel disease mechanisms from a large LGMD cohort of

4656

patients.

Ann

Clin

Transl

Neurol

2018;5(12):1574–87.

https://doi.org/10.1002/acn3.649

29.

de Paula F, Vieira N, Starling A, Yamamoto LU, Lima B, de Cassia Pavanello

R, et al. Asymptomatic carriers for homozygous novel mutations in the FKRP gene: the

other

end

of

the

spectrum.

Eur

Hum

Genet

2003;11(12):923–30.

https://doi.org/10.1038/sj.ejhg.5201066

30.

Magot A, Mercier S, Seraphin CB, Mussini JM, Peron Y. Facial dysmorphism

in FKRP limb-girdle muscular dystrophy: About two cases. Neuromuscular Disord

23

2014;24(9–10):900–1. https://doi.org/10.1016/j.nmd.2014.06.354.

31.

Kava M, Chitayat D, Blaser S, Ray PN, Vajsar J. Eye and brain abnormalities

in congenital muscular dystrophies caused by fukutin-related protein gene (FKRP)

mutations.

Pediatr

Neurol

2013;49(5):374–8.

https://doi.org/10.1016/j.pediatrneurol.2013.06.022.

32.

Louhichi N, Triki C, Quijano-Roy S, Richard P, Makri S, Meziou M, et al. New

FKRP mutations causing congenital muscular dystrophy associated with mental

retardation and central nervous system abnormalities. Identification of a founder

mutation

in

Tunisian

families.

Neurogenetics

2004;5(1):27–34.

https://doi.org/10.1007/s10048-003-0165-9.

33.

Stensland E, Lindal S, Jonsrud C, Torbergsen T, Bindoff LA, Rasmussen M, et

al. Prevalence, mutation spectrum and phenotypic variability in Norwegian patients

with Limb Girdle Muscular Dystrophy 2I. Neuromuscul Disord 2011;21(1):41–6.

https://doi.org/10.1016/j.nmd.2010.08.008.

34.

Lee AJ, Jones KA, Butterfield RJ, Cox MO, Konersman CG, Grosmann C, et al.

Clinical, genetic, and pathologic characterization of FKRP Mexican founder mutation

c.1387A>G.

Neurol

Genet

https://doi.org/10.1212/NXG.0000000000000315.

24

2019;5(2):e315.

35.

Mudau MM, Essop F, Krause A. A novel FKRP-related muscular dystrophy

founder mutation in South African Afrikaner patients with a phenotype suggestive of a

dystrophinopathy.

Afr

Med

2016;107(1):80–2.

https://doi.org/10.7196/SAMJ.2016.v107.i1.10907.

36.

Rasmussen M, Scheie D, Breivik N, Mork M, Lindal S. Clinical and muscle

biopsy findings in Norwegian paediatric patients with limb girdle muscular dystrophy 2I.

Acta Paediatr 2014;103(5):553–8. https://doi.org/10.1111/apa.12561.

37.

Wang DN, Wang ZQ, Chen YQ, Xu GR, Lin MT, Wang N. Limb-girdle

muscular dystrophy type 2I: two Chinese families and a review in Asian patients. Int J

Neurosci 2018;128(3):199–207. https://doi.org/10.1080/00207454.2017.1380640.

38.

Poppe M, Bourke J, Eagle M, Frosk P, Wrogemann K, Greenberg C, et al.

Cardiac and respiratory failure in limb-girdle muscular dystrophy 2I. Ann Neurol

2004;56(5):738–41. https://doi.org/10.1002/ana.20283.

39.

Murphy LB, Schreiber-Katz O, Rafferty K, Robertson A, Topf A, Willis TA, et

al. Global FKRP Registry: observations in more than 300 patients with limb girdle

muscular

dystrophy

R9.

Ann

Clin

Transl

Neurol

2020;7(5):757–66.

https://doi.org/10.1002/acn3.51042.

40.

Walter MC, Petersen JA, Stucka R, Fischer D, Schröder R, Vorgerd M, et al.

25

FKRP (826C>A) frequently causes limb-girdle muscular dystrophy in German patients.

J Med Genet 2004;41(4):e50. https://doi.org/10.1136/jmg.2003.013953.

41.

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards

and guidelines for the interpretation of sequence variants: a joint consensus

recommendation of the American College of Medical Genetics and Genomics and the

Association

for

Molecular

Pathology.

Genet

Med

2015;17(5):405–24.

https://doi.org/10.1038/gim.2015.30.

42.

Jimenez-Mallebrera C, Torelli S, Feng L, Kim J, Godfrey C, Clement E, et al. A

comparative study of alpha-dystroglycan glycosylation in dystroglycanopathies suggests

that the hypoglycosylation of alpha-dystroglycan does not consistently correlate with

clinical

severity.

Brain

Pathol

2009;19(4):596–611.

https://doi.org/10.1111/j.1750-3639.2008.00198.x.

43.

Alhamidi M, Brox V, Stensland E, Liset M, Lindal S, Nilssen Ø. Limb girdle

muscular dystrophy type 2I: No correlation between clinical severity, histopathology

and glycosylated alpha-dystroglycan levels in patients homozygous for common FKRP

mutation.

Neuromuscul

Disord

2017;27(7):619–26.

https://doi.org/10.1016/j.nmd.2017.02.015.

44.

Esapa CT, Benson MA, Schröder JE, Martin-Rendon E, Brockington M,

26

Brown SC, et al. Functional requirements for fukutin-related protein in the Golgi

apparatus.

Hum

Mol

Genet

2002;11(26):3319–31.

https://doi.org/10.1093/hmg/11.26.3319.

45.

Kuwabara N, Imae R, Manya H, Tanaka T, Mizuno M, Tsumoto H, et al.

Crystal structures of fukutin-related protein (FKRP), a ribitol-phosphate transferase

related

to

muscular

dystrophy.

Nat

Commun

2020;11(1):303.

https://doi.org/10.1038/s41467-019-14220-z

46.

Keramaris-Vrantsis E, Lu PJ, Doran T, Zillmer A, Ashar J, Esapa CT, et al.

Fukutin-related protein localizes to the Golgi apparatus and mutations lead to

mislocalization

in

muscle

in

vivo.

Muscle

Nerve

2007;36(4):455–65.

https://doi.org/10.1002/mus.20833.

47.

Boito CA, Fanin M, Gavassini BF, Cenacchi G, Angelini C, Pegoraro E.

Biochemical and ultrastructural evidence of endoplasmic reticulum stress in LGMD2I.

Virchows Arch 2007;451(6):1047–55. https://doi.org/10.1007/s00428-007-0515-3.

27

Figure legends

Figure 1. Immunohistochemical staining of skeletal muscles of (a–g) Patients 1-9 and

control (j) with antibodies directed toward the glycosylated alpha-dystroglycan. Scale

bars (yellow and red) indicate 50 µm and 20 µm, respectively.

28

Table legends

Table 1. Summary of the clinical features of patients with FKRP mutations. CK,

creatine kinase; WB, western blot; IHC, immunohistochemistry; LOA, laminin overlay

assay; ND, no data; VC, vital capacity; FEV, forced expiratory volume; NPPV,

non-invasive positive pressure ventilation; M, male; F, female

Table 2. FKRP mutations were identified in this study and the results of in silico

analysis for missense mutations. ACMG, American College of Medical Genetics and

Genomics; MDC1C, Congenital muscular dystrophy type 1C; LGMD2I, limb-girdle

muscular dystrophy 2I. Empty space indicates that no analysis was performed.

29

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る