リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Identification of novel genes associated with dysregulation of B cells in patients with primary Sjögren's syndrome (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Identification of novel genes associated with dysregulation of B cells in patients with primary Sjögren's syndrome (本文)

稲毛, 純 慶應義塾大学

2021.03.23

概要

Background: The aim of this study was to identify the molecular mechanism of dysregulation of B cell subpopulations of primary Sjögren’s syndrome (pSS) at the transcriptome level.

Methods: We enrolled patients with pSS (n = 6) and healthy controls (HCs) (n = 6) in the discovery cohort using microarray and pSS (n = 14) and HCs (n = 12) in the validation cohort using quantitative PCR (qPCR). Peripheral B cells acquired from these subjects were separated by cell sorting into four subsets: CD38−IgD+ (Bm1), CD38+IgD+ (naive B cells), CD38highIgD+ (pre-germinal centre B cells) and CD38±IgD− (memory B cells). We performed differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA).

Results: Expression of the long non-coding RNA LINC00487 was significantly upregulated in all B cell subsets, as was that of HLA and interferon (IFN) signature genes. Moreover, the normalized intensity value of LINC00487 significantly correlated with the disease activity score of all pSS B cell subsets. Studies of human B cell lines revealed that the expression of LINC00487 was strongly induced by IFNα. WGCNA revealed six gene clusters associated with the B cell subpopulation of pSS. Further, SOX4 was identified as an inter-module hub gene.

Conclusion: Our transcriptome analysis revealed key genes involved in the dysregulation of B cell subpopulations associated with pSS.

この論文で使われている画像

参考文献

1. Qin B, Wang J, Yang Z, et al. Epidemiology of primary Sjögren’s syndrome: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74:1983–9.

2. Muskardin TLW, Niewold TB. Type I interferon in rheumatic diseases. Nat Rev Rheumatol. 2018;14:214–28.

3. Imgenberg-Kreuz J, Sandling JK, Björk A, et al. Transcription profiling of peripheral B cells in antibody-positive primary Sjögren’s syndrome reveals upregulated expression of CX3CR1 and a type I and type II interferon signature. Scand J Immunol. 2018;87:e12662.

4. Devauchelle-Pensec V, Cagnard N, Pers JO, et al. Gene expression profile in the salivary glands of primary Sjögren’s syndrome patients before and after treatment with rituximab. Arthritis Rheum. 2010;62:2262–71.

5. Domeier PP, Chodisetti SB, Schell SL, et al. B-cell-intrinsic type 1 interferon signaling is crucial for loss of tolerance and the development of autoreactive B cells. Cell Rep. 2018;24:406–18.

6. Lessard CJ, Li H, Adrianto I, et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome. Nat Genet. 2013;45:1284–92.

7. Li Y, Zhang K, Chen H, et al. A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjögren’s syndrome at 7q11.23. Nat Genet. 2013;45:1361–5.

8. Triantafyllopoulou A, Moutsopoulos H. Persistent viral infection in primary Sjögren’s syndrome: review and perspectives. Clin Rev Allergy Immunol. 2007;32:210–4.

9. Reale M, D’Angelo C, Costantini E, et al. MicroRNA in Sjögren’s syndrome: their potential roles in pathogenesis and diagnosis. J Immunol Res. 2018; 7510174.

10. Wang-Renault SF, Boudaoud S, Nocturne G, et al. Deregulation of microRNA expression in purified T and B lymphocytes from patients with primary Sjögren’s syndrome. Ann Rheum Dis. 2018;77:133–40.

11. Tang Y, Zhou T, Yu X. The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol. 2017;13:657–69.

12. Sandhya P, Joshi K, Scaria V. Long noncoding RNAs could be potential key players in the pathophysiology of Sjögren’s syndrome. Int J Rheum Dis. 2015;18:898–905.

13. Shi H, Cao N, Pu Y, et al. Long non-coding RNA expression profile in minor salivary gland of primary Sjögren’s syndrome. Arthritis Res Ther. 2016;18:109.

14. Tasaki S, Suzuki K, Nishikawa A, et al. Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren’s syndrome. Ann Rheum Dis. 2017;76:1458–66.

15. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348: 648–60.

16. Nishikawa A, Suzuki K, Kassai Y, et al. Identification of definitive serum biomarkers associated with disease activity in primary Sjögren’s syndrome. Arthritis Res Ther. 2016;18:106.

17. Lee SJ, Oh HJ, Choi BY, et al. Serum 25-hydroxyvitamin D3 and BAFF levels are associated with disease activity in primary Sjogren’s syndrome. J Immunol Res. 2016;2016:5781070.

18. James K, Chipeta C, Parker A, et al. B-cell activity markers are associated with different disease activity domains in primary Sjögren’s syndrome. Rheumatology (Oxford). 2018;57:1222–7.

19. Ishioka-Takei E, Yoshimoto K, Suzuki K, et al. Increased proportion of a CD38highIgD+ B cell subset in peripheral blood is associated with clinical and immunological features in patients with primary Sjögren’s syndrome. Clin Immunol. 2018;187:85–91.

20. Bohnhorst JØ, Bjørgan MB, Thoen JE, et al. Bm1-Bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the B cell subpopulations in patients with primary Sjögren’s syndrome. J Clin Invest. 2005;115:3205–16.

21. Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis. 2002;61:554–8.

22. Shiboski SC, Shiboski CH, Criswell L, et al. American College of Rheumatology classification criteria for Sjögren’s syndrome: a data-driven, expert consensus approach in the Sjögren’s International Collaborative Clinical Alliance Cohort. Arthritis Care Res (Hoboken). 2012;64:475–87.

23. Seror R, Ravaud P, Bowman SJ, et al. EULAR Sjögren’s syndrome disease activity index: development of a consensus systemic disease activity index for primary Sjögren’s syndrome. Ann Rheum Dis. 2010;69:1103–9.

24. Seror R, Bowman SJ, Brito-Zeron P, et al. EULAR Sjögren’s syndrome disease activity index (ESSDAI): a user guide. RMD Open. 2015;1:e000022.

25. Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.

26. Huang R, Grishagin I, Wang Y, et al. The NCATS BioPlanet - an integrated platform for exploring the universe of cellular signaling pathways for toxicology, systems biology, and chemical genomics. Front Pharmacol. 2019;10:445.

27. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

28. Nocturne G, Mariette X. B cells in the pathogenesis of primary Sjögren’s syndrome. Nat Rev Rheumatol. 2018;14:133–45.

29. Glauzy S, Sng J, Bannock JM, et al. Defective early B cell tolerance checkpoints in Sjögren’s syndrome patients. Arthritis Rheumatol. 2017;69: 2203–8.

30. Harris PE, Malanga D, Liu Z, et al. Effect of interferon alpha on MHC class II gene expression in ex vivo human islet tissue. Biochim Biophys Acta. 1762; 2006:627–35.

31. Harley JB, Reichlin M, Arnett FC, et al. Gene interaction at HLA-DQ enhances autoantibody production in primary Sjögren’s syndrome. Science. 1986;232: 1145–7.

32. Petri A, Dybkær K, Bøgsted M, et al. Long noncoding RNA expression during human B-cell development. PLoS One. 2015;10:e0138236.

33. Thierry-Mieg D, Thierry-Mieg J. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 2006;7(Suppl 1):S12.1–14.

34. Fishilevich S, Nudel R, Rappaport N, et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017;2017:bax028.

35. McCall MN, Uppal K, Jaffee HA, et al. The gene expression barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes. Nucleic Acids Res. 2011;39:D1011–5.

36. Jiayu Yu, Alyssa Bouska, Waseem Lone, et al. Long non coding RNA signatures with diagnostic and prognostic significance in aggressive B-cell lymphoma. Blood 2016;128:1759.

37. Thompson EC, Cobb BS, Sabbattini P, et al. Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity. 2007;26:335–44.

38. Mallampati S, Sun B, Lu Y, et al. Integrated genetic approaches identify the molecular mechanisms of Sox4 in early B-cell development: intricate roles for RAG1/2 and CK1ε. Blood. 2014;123:4064–76.

39. Yoshitomi H, Kobayashi S, Miyagawa-Hayashino A, et al. Human Sox4 facilitates the development of CXCL13-producing helper T cells in inflammatory environments. Nat Commun. 2018;9:3762.

40. Chen JQ, Papp G, Póliska S, et al. MicroRNA expression profiles identify disease-specific alterations in systemic lupus erythematosus and primary Sjögren’s syndrome. PLoS One. 2017;12:e0174585.

41. Kim C, Hu B, Jadhav RR, et al. Activation of miR-21-regulated pathways in immune aging selects against signatures characteristic of memory T cells. Cell Rep. 2018;25:2148–62 e5.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る