リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Whole-genome analysis of recombinant inbred rice lines reveals a quantitative trait locus on chromosome 3 with genotype-by-environment interaction effects」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Whole-genome analysis of recombinant inbred rice lines reveals a quantitative trait locus on chromosome 3 with genotype-by-environment interaction effects

Sakai, Toshiyuki Fujioka, Tomoaki Uemura, Toyokazu Saito, Shinichi Terauchi, Ryohei Abe, Akira 京都大学 DOI:10.1093/g3journal/jkad082

2023.06

概要

Elucidating genotype-by-environment interactions is fundamental for understanding the interplay between genetic and environmental factors that shape complex traits in crops. Genotype-by-environment interactions are of practical importance, as they determine the performance of cultivars grown in different environments, prompting the need for an efficient approach for evaluating genotype-by-environment interactions. Here, we describe a method for genotype-by-environment detection that involves comparing linear mixed models. This method successfully detected genotype-by-environment interactions in rice (Oryza sativa) recombinant inbred lines grown at 3 locations. We identified a quantitative trait locus (QTL) on chromosome 3 that was associated with heading date, grain number, and leaf length. The effect of this QTL on plant growth–related traits varied with environmental conditions, indicating the presence of genotype-by-environment interactions. Therefore, our method enables a powerful genotype-by-environment detection pipeline that should facilitate the production of high-yielding crops in a given environment.

この論文で使われている画像

参考文献

Alfatih A, Wu J, Zhang Z-S, Xia J-Q, Jan SU, Yu LH, Xiang CB. Rice

NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency

Downloaded from https://academic.oup.com/g3journal/article/13/6/jkad082/7117618 by Kyoto University user on 05 October 2023

Fang et al. 2019). Here, we showed that when the genotype of this

locus was from the Hitomebore parent, heading date was delayed

compared to the heading date conferred by the allele from the

tropical japonica cultivar URASAN1 at all 3 trial locations (Fig. 3a).

Our results are also in line with the finding of Fang et al. that the

effect of Ef-cd on heading date depends on environmental factors

(Fig. 3a) (Fang et al. 2019). Our results suggest that the Ef-cd locus of

tropical japonica cultivar URASAN1 has a similar function as that of

the indica cultivar.

The locus we identified also showed GxE interaction effects for

grain number and leaf length (Fig. 3, b and c). Phenotypes related to

plant growth and heading date are normally correlated because a

long growth period leads to higher yields (Wang et al. 2018; Yu and

Qian 2019). However, the Ef-cd locus causes a shortened matur­

ation period with no yield penalty (Fang et al. 2019). We determined

that when plants had the URASAN1 allele at this locus, their head­

ing date was earlier compared to that of plants with the

Hitomebore allele at all 3 trial locations (Fig. 3a). At Aomori and

Fukushima, grain number and leaf length did not vary depending

on heading date (Fig. 3, b and c), which is consistent with the

finding that the Ef-cd locus accelerates maturation without a yield

penalty (Fang et al. 2019). However, at the Iwate location, grain

number and leaf length decreased with earlier heading date

(Fig. 3). Therefore, our results suggest that the relationship be­

tween Ef-cd-mediated maturation period and plant growth traits

is modulated by environmental factors. Alternatively, it is possible

that other genes located in this genomic region have effects on

plant growth traits, with GxE interaction effects.

Several genes that facilitate nitrogen utilization are upregu­

lated via the function of the Ef-cd locus (Fang et al. 2019).

Nitrogen utilization is closely related to the photosynthetic cap­

acity and yield potential of crops (Chen et al. 2016, 2017; Wang

et al. 2018). Our analysis showed that the soil NO3 concentration

might contribute to the GxE interaction effect of our QTL for grain

number and leaf length (Supplementary Table 9). It is possible that

the concentration of available nitrogen in the soil influences the

genetic effects of the Ef-cd locus on grain number and leaf length.

However, the genomic region identified by our GxE analysis also

contains OsNLP1 (Supplementary Table 8), which enhances nitro­

gen utilization to improve plant growth and grain yield under ni­

trogen limitation conditions (Alfatih et al. 2020). Therefore,

OsNLP1 is also a candidate with a possible GxE interaction effect

on grain number and leaf length in the RIL1 population.

Several genes of unknown function are also located in the gen­

omic region we identified. Furthermore, our analysis of environ­

mental factors revealed several factors that showed significant

GxE interaction effects, including lowest and highest tempera­

tures, precipitation, and sunshine duration (Supplementary

Table 9). Therefore, additional experiments under more con­

trolled environmental conditions are needed to identify gene

sets and environmental factors that contribute to the GxE inter­

action. Identifying relevant environmental factors is easier under

controlled laboratory conditions than under natural conditions;

however, controlled conditions do not reflect the natural environ­

ments where crops are actually grown (Anderson et al. 2014; de

Leon et al. 2016). Thus, to understand the genetic and environmen­

tal factors involved in GxE interactions, it will be important to

measure the effects of environmental factors under both natural

and controlled laboratory conditions (Xu 2016; Xu et al. 2017).

Our results show that the effects of QTLs on yield traits such as

grain number vary with environmental factors (Fig. 3b). Numerous

GWASs have identified QTLs associated with agronomically im­

portant traits in rice (Huang et al. 2010; Yano et al. 2019).

10 |

G3, 2023, Vol. 13, No. 6

Holland JB, Nyquist WE, Cervantes-Martínez CT. Estimating and inter­

preting heritability for plant breeding: an update. In: Plant Breeding

Reviews. Oxford, UK: John Wiley & Sons, Inc.; 2010. p. 9–112.

Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T,

Zhang Z, et al. Genome-wide association studies of 14 agronomic

traits in rice landraces. Nat Genet. 2010;42(11):961–967. doi:10.

1038/ng.695.

Jarquín D, da Silva C L, Gaynor RC, Poland J, Fritz A, Howard R,

Battenfield S, Crossa J. Increasing genomic-enabled prediction ac­

curacy by modeling genotype × environment interactions in

Kansas wheat. Plant Genome. 2017;10(2). doi:10.3835/

plantgenome2016.12.0130.

Jupp S, Burdett T, Leroy C, Parkinson H. A new ontology lookup ser­

vice at EMBL-EBI. Workshop on Semantic Web Applications and

Tools for Life Sciences 2015.

Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie

WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, et al.

Improvement of the Oryza sativa Nipponbare reference genome

using next generation sequence and optical map data. Rice.

2013;6(1):4. doi:10.1186/1939-8433-6-4.

Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M. Development

of an RFLP-based rice diversity research set of germplasm. Breed

Sci. 2005;55(4):431–440. doi:10.1270/jsbbs.55.431.

Lee S, Kim J, Han J-J, Han M-J, An G. Functional analyses of the flower­

ing time gene OsMADS50, the putative SUPPRESSOR OF

OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20)

ortholog in rice. Plant J. 2004;38(5):754–764. doi:10.1111/j.1365313X.2004.02082.x.

Li B, Chen L, Sun W, Wu D, Wang M, Yu Y, Chen G, Yang W, Lin Z,

Zhang X, et al. Phenomics-based GWAS analysis reveals the gen­

etic architecture for drought resistance in cotton. Plant

Biotechnol J. 2020;18(12):2533–2544. doi:10.1111/pbi.13431.

Li H, Durbin R. Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics. 2009;25(14):

1754–1760. doi:10.1093/bioinformatics/btp324.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,

Abecasis G, Durbin R; 1000 Genome Project Data Processing

Subgroup. The sequence alignment/map format and SAMtools.

Bioinformatics. 2009;25(16):2078–2079. doi:10.1093/bioinformatics/

btp352.

Li Z, Pinson SR, Park WD, Paterson AH, Stansel JW. Epistasis for three

grain yield components in rice (Oryza sativa L.). Genetics. 1997;

145(2):453–465. doi:10.1093/genetics/145.2.453.

Liu H-J, Yan J. Crop genome-wide association study: a harvest of bio­

logical relevance. Plant J. 2019;97(1):8–18. doi:10.1111/tpj.14139.

Lo C-C, Chain PSG. Rapid evaluation and quality control of next gen­

eration sequencing data with FaQCs. BMC Bioinformatics. 2014;

15(1):366. doi:10.1186/s12859-014-0366-2.

Malosetti M, Ribaut J-M, van Eeuwijk FA. The statistical analysis of

multi-environment data: modeling genotype-by-environment

interaction and its genetic basis. Front Physiol. 2013;4:44. doi:

10.3389/fphys.2013.00044.

Malosetti M, Voltas J, Romagosa I, Ullrich SE, van Eeuwijk FA. Mixed

models including environmental covariables for studying QTL by

environment interaction. Euphytica. 2004;137(1):139–145. doi:10.

1023/B:EUPH.0000040511.46388.ef.

Manneh B, Stam P, Struik PC, Bruce-Oliver S, van Eeuwijk FA.

QTL-based analysis of genotype-by-environment interaction for

grain yield of rice in stress and non-stress environments.

Euphytica. 2007;156(1–2):213–226. doi:10.1007/s10681-007-9368-8.

Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R.

BCFtools/RoH: a hidden Markov model approach for detecting

autozygosity

from

next-generation

sequencing

data.

Downloaded from https://academic.oup.com/g3journal/article/13/6/jkad082/7117618 by Kyoto University user on 05 October 2023

and improves yield and nitrogen use efficiency. J Exp Bot. 2020;

71(19):6032–6042. doi:10.1093/jxb/eraa292.

Alqudah AM, Sallam A, Stephen Baenziger P, Börner A. GWAS:

fast-forwarding gene identification and characterization in tem­

perate cereals: lessons from Barley—a review. J Advert Res.

2019;22:119–135. doi:10.1016/j.jare.2019.10.013

Anderson JT, Wagner MR, Rushworth CA, Prasad KVSK, Mitchell-Olds

T. The evolution of quantitative traits in complex environments.

Heredity (Edinb). 2014;112(1):4–12. doi:10.1038/hdy.2013.33.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a prac­

tical and powerful approach to multiple testing. J R Stat Soc. 1995;

57(1):289–300. doi:10.1111/j.2517-6161.1995.tb02031.x

Bian XF, Liu X, Zhao ZG, Jiang L, Gao H, Zhang YH, Zheng M, Chen LM,

Liu SJ, Zhai HQ, et al. Heading date gene, dth3 controlled late flow­

ering in O. Glaberrima Steud. by down-regulating Ehd1. Plant Cell

Rep. 2011;30(12):2243–2254. doi:10.1007/s00299-011-1129-4.

Blanche SB, Utomo HS, Wenefrida I, Myers GO. Genotype× environ­

ment interactions of hybrid and varietal rice cultivars for grain

yield and milling quality. Crop Sci. 2009;49(6):2011–2018. doi:10.

2135/cropsci2009.04.0175.

Botto JF, Coluccio MP. Seasonal and plant-density dependency for

quantitative trait loci affecting flowering time in multiple popula­

tions of Arabidopsis thaliana. Plant Cell Environ. 2007;30(11):

1465–1479. doi:10.1111/j.1365-3040.2007.01722.x.

Chen J, Fan X, Qian K, Zhang Y, Song M, Liu Y, Xu G, Fan X.

pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake effi­

ciency and grain yield in transgenic rice plants. Plant Biotechnol J.

2017;15(10):1273–1283. doi:10.1111/pbi.12714.

Chen J, Zhang Y, Tan Y, Zhang M, Zhu L, Xu G, Fan X. Agronomic

nitrogen-use efficiency of rice can be increased by driving

OsNRT2.1 expression with the OsNAR2.1 promoter. Plant

Biotechnol J. 2016;14(8):1705–1715. doi:10.1111/pbi.12531.

de Leon N, Jannink J-L, Edwards JW, Kaeppler SM. Introduction to a

special issue on genotype by environment interaction. Crop Sci.

2016;56(5):2081–2089. doi:10.2135/cropsci2016.07.0002in.

Deng X-J, Zhou K-D, Li R-D, Chun Z, Li P, Wang WM, Zhai WX, Zhu

LH. Identification and gene mapping of completely dominant

earliness in rice. Agric Sci China. 2002;1(1):11–18.

El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM.

Genotype×environment interaction QTL mapping in plants: les­

sons from Arabidopsis. Trends Plant Sci. 2014;19(6):390–398.

doi:10.1016/j.tplants.2014.01.001.

Endelman JB. Ridge regression and other kernels for genomic selec­

tion with R package rrBLUP. Plant Genome. 2011;4(3):250–255.

doi:10.3835/plantgenome2011.08.0024.

Fang J, Zhang F, Wang H, Wang W, Zhao F, Li Z, Sun C, Chen F, Xu F,

Chang S, et al. Ef-cd locus shortens rice maturity duration without

yield penalty. Proc Natl Acad Sci U S A. 2019;116(37):18717–18722.

doi:10.1073/pnas.1815030116.

Fournier-Level A, Wilczek AM, Cooper MD, Roe JL, Anderson J, Eaton

D, Moyers BT, Petipas RH, Schaeffer RN, Pieper B. Paths to selec­

tion on life history loci in different natural environments across

the native range of Arabidopsis thaliana. Mol Ecol. 2013;22(13):

3552–3566. doi:10.1111/mec.12285.

Fragoso CA, Heffelfinger C, Zhao H, Dellaporta SL. Imputing geno­

types in biallelic populations from low-coverage sequence data.

Genetics. 2016;202(2):487–495. doi:10.1534/genetics.115.182071.

Ghandilyan A, Ilk N, Hanhart C, Mbengue M, Barboza L, Schat H,

Koornneef M, El-Lithy M, Vreugdenhil D, Reymond M, et al. A

strong effect of growth medium and organ type on the identifica­

tion of QTLs for phytate and mineral concentrations in three

Arabidopsis thaliana RIL populations. J Exp Bot. 2009;60(5):

1409–1425. doi:10.1093/jxb/erp084.

T. Sakai et al.

Wang W, Hu B, Yuan D, Liu Y, Che R, Hu Y, Ou S, Liu Y, Zhang Z,

Wang H, et al. Expression of the nitrate transporter gene

OsNRT1.1A/OsNPF6.3 confers high yield and early maturation

in rice. Plant Cell. 2018;30(3):638–651. doi:10.1105/tpc.17.00809.

Wang D, Salah El-Basyoni I, Stephen Baenziger P, Crossa J, Eskridge

KM, Dweikat I. Prediction of genetic values of quantitative traits

with epistatic effects in plant breeding populations. Heredity

(Edinb). 2012;109(5):313–319. doi:10.1038/hdy.2012.44.

Xu Y. Envirotyping for deciphering environmental impacts on crop

plants. Theor Appl Genet. 2016;129(4):653–673. doi:10.1007/

s00122-016-2691-5.

Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS.

Enhancing genetic gain in the era of molecular breeding. J Exp

Bot. 2017;68(11):2641–2666. doi:10.1093/jxb/erx135.

Xu F-F, Tang F-F, Shao Y-F, Chen Y-L, Chuan T, Bao JS. Genotype ×

environment interactions for agronomic traits of rice revealed

by association mapping. Rice Sci. 2014;21(3):133–141. doi:10.

1016/S1672-6308(13)60179-1.

Yan W, Hunt LA, Sheng Q, Szlavnics Z. Cultivar evaluation

and mega-environment investigation based on the GGE biplot.

Crop

Sci.

2000;40(3):597–605.

doi:10.2135/cropsci2000.

403597x.

Yano K, Morinaka Y, Wang F, Huang P, Takehara S, Hirai T, Ito A,

Koketsu E, Kawamura M, Kotake K, et al. GWAS with principal

component analysis identifies a gene comprehensively control­

ling rice architecture. Proc Natl Acad Sci U S A. 2019;116(42):

21262–21267. doi:10.1073/pnas.1904964116.

Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF,

McMullen MD, Gaut BS, Nielsen DM, Holland JB, et al. A unified

mixed-model method for association mapping that accounts

for multiple levels of relatedness. Nat Genet. 2006;38(2):

203–208. doi:10.1038/ng1702.

Yu Y, Qian Q. Rice breeding: a long noncoding locus with great poten­

tial. Mol Plant. 2019;12(11):1431–1433. doi:10.1016/j.molp.2019.

10.008.

Ziyatdinov A, Vázquez-Santiago M, Brunel H, Martinez-Perez A,

Aschard H, et al. Lme4qtl: linear mixed models with flexible covari­

ance structure for genetic studies of related individuals. BMC

Bioinformatics. 2018;19(1):68. doi:10.1186/s12859-018-2057-x.

Zobel RW, Wright MJ, Gauch HG Jr. Statistical analysis of a yield trial.

Agron J. 1988;80(3):388–393. doi:10.2134/agronj1988.000219620

08000030002x.

Editor: A. Lipka

Downloaded from https://academic.oup.com/g3journal/article/13/6/jkad082/7117618 by Kyoto University user on 05 October 2023

Bioinformatics. 2016;32(11):1749–1751. doi:10.1093/bioinformat

ics/btw044.

Pérez-Rodríguez P, de los Campos G. Genome-wide regression and

prediction with the BGLR statistical package. Genetics. 2014;

198(2):483-495. doi:10.1534/genetics.114.164442.

Phuong N, Afolayan G, Stützel H, Uptmoor R, El-Soda M. Unraveling

the genetic complexity underlying sorghum response to water

availability. PLoS One. 2019;14(4):e0215515. doi:10.1371/journal.

pone.0215515.

Rosyara UR, De Jong WS, Douches DS, Endelman JB. Software for

genome-wide association studies in autopolyploids and its

application to potato. Plant Genome. 2016;9(2). doi:10.3835/

plantgenome2015.08.0073.

Sakai T, Abe A, Shimizu M, Terauchi R. RIL-StEp: epistasis analysis of

rice recombinant inbred lines reveals candidate interacting genes

that control seed hull color and leaf chlorophyll content. G3

(Bethesda). 2021;11(7):jkab130. doi:10.1093/g3journal/jkab130

Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H,

Yang CC, Iwamoto M, Abe T, et al. Rice Annotation Project

Database (RAP-DB): an integrative and interactive database for

rice genomics. Plant Cell Physiol. 2013;54(2):e6. doi:10.1093/pcp/

pcs183.

Schmieder R, Edwards R. Quality control and preprocessing of meta­

genomic datasets. Bioinformatics. 2011;27(6):863–864. doi:10.

1093/bioinformatics/btr026.

Sharifi P, Aminpanah H, Erfani R, Mohaddesi A, Abbasian A.

Evaluation of genotype × environment interaction in rice based

on AMMI model in Iran. Rice Sci. 2017;24(3):173–180. doi:10.

1016/j.rsci.2017.02.001.

Smith AB, Cullis BR, Thompson R. The analysis of crop cultivar

breeding and evaluation trials: an overview of current mixed

model approaches. J Agric Sci. 2005;143(6):449–462. doi:10.1017/

S0021859605005587.

Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, Park SJ, Goren A,

Jiang K, Ramos A, van der Knaap E, et al. Bypassing negative epis­

tasis on yield in tomato imposed by a domestication gene. Cell.

2017;169(6):1142–1155.e12. doi:10.1016/j.cell.2017.04.032.

Tayefeh M, Sadeghi SM, Noorhosseini SA, Bacenetti J, Damalas CA.

Environmental impact of rice production based on nitrogen fertil­

izer use. Environ Sci Pollut Res Int. 2018;25(16):15885–15895. doi:

10.1007/s11356-018-1788-6.

Thomas D. Gene–environment-wide association studies: emerging

approaches. Nat Rev Genet. 2010;11(4):259–272. doi:10.1038/

nrg2764

| 11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る