リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phase III clinical trial of autologous CD34 + cell transplantation to accelerate fracture nonunion repair」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phase III clinical trial of autologous CD34 + cell transplantation to accelerate fracture nonunion repair

Kuroda, Ryosuke Niikura, Takahiro Matsumoto, Tomoyuki Fukui, Tomoaki Oe, Keisuke Mifune, Yutaka Minami, Hironobu Matsuoka, Hiroshi Yakushijin, Kimikazu Miyata, Yoshiharu Kawamoto, Shinichiro Kagimura, Tatsuo Fujita, Yasuyuki Kawamoto, Atsuhiko 神戸大学

2023.10.05

概要

Background: We previously demonstrated that CD34 + cell transplantation in animals healed intractable fractures via osteogenesis and vasculogenesis; we also demonstrated the safety and efficacy of this cell therapy in an earlier phase I/II clinical trial conducted on seven patients with fracture nonunion. Herein, we present the results of a phase III clinical trial conducted to confirm the results of the previous phase studies using a larger cohort of patients. Methods: CD34 + cells were mobilized via administration of granulocyte colony-stimulating factor, harvested using leukapheresis, and isolated using magnetic cell sorting. Autologous CD34 + cells were transplanted in 15 patients with tibia nonunion and 10 patients with femur nonunion, who were followed up for 52 weeks post transplantation. The main outcome was a reduction in time to heal the tibia in nonunion patients compared with that in historical control patients. We calculated the required number of patients as 15 based on the results of the phase I/II study. An independent data monitoring committee performed the radiographic assessments. Adverse events and medical device failures were recorded. Results: All fractures healed during the study period. The time to radiological fracture healing was 2.8 times shorter in patients with CD34 + cell transplantation than in the historical control group (hazard ratio: 2.81 and 95% confidence interval 1.16–6.85); moreover, no safety concerns were observed. Conclusions: Our findings strongly suggest that autologous CD34 + cell transplantation is a novel treatment option for fracture nonunion. Trial registration: UMIN-CTR, UMIN000022814. Registered on 22 June 2016.

この論文で使われている画像

関連論文

参考文献

1. Rodriguez-Merchan EC, Forriol F. Nonunion: general principles and

experimental data. Clin Orthop Relat Res. 2004;419:4–12.

2. Hak DJ, Fitzpatrick D, Bishop JA, Marsh JL, Tilp S, Schnettler R, et al.

Delayed union and nonunions: epidemiology, clinical issues, and financial

aspects. Injury. 2014;45(Suppl 2):S3–7.

3. Niikura T, Lee SY, Sakai Y, Nishida K, Kuroda R, Kurosaka M. Causative

factors of fracture nonunion: the proportions of mechanical, biological, patient-dependent, and patient-independent factors. J Orthop Sci.

2014;19:120–4.

4. Dickson K, Katzman S, Delgado E, Contreras D. Delayed unions and nonunions of open tibial fractures. Correlation with arteriography results. Clin

Orthop Relat Res. 1994;302:189–93.

5. Lu C, Miclau T, Hu D, Marcucio RS. Ischemia leads to delayed union during

fracture healing: a mouse model. J Orthop Res. 2007;25:51–61.

6. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, et al.

Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment

of tibial nonunions. J Bone Joint Surg Am. 2001;83–A(2)(Suppl 1):S151–8.

7. Zimmermann G, Wagner C, Schmeckenbecher K, Wentzensen A,

Moghaddam A. Treatment of tibial shaft non-unions: bone morphogenetic proteins versus autologous bone graft. Injury. 2009;40(Suppl

3):S50–3.

8. Calori GM, Colombo M, Bucci M, Mazza EL, Fadigati P, Mazzola S. Clinical

effectiveness of Osigraft in long-bones non-unions. Injury. 2015;46(Suppl

8):S55–64.

9. Tressler MA, Richards JE, Sofianos D, Comrie FK, Kregor PJ, Obremskey

WT. Bone morphogenetic protein-2 compared to autologous iliac

crest bone graft in the treatment of long bone nonunion. Orthopedics.

2011;34:e877–84.

10. Takemoto R, Forman J, Taormina DP, Egol KA. No advantage to rhBMP-2

in addition to autogenous graft for fracture nonunion. Orthopedics.

2014;37:e525–30.

11. von Rüden C, Morgenstern M, Hierholzer C, Hackl S, Gradinger FL,

Woltmann A, et al. The missing effect of human recombinant bone

23. 24. 25. 26. 27. 28. 29. 30. morphogenetic proteins BMP-2 and BMP-7 in surgical treatment of

aseptic forearm nonunion. Injury. 2016;47:919–24.

von Rüden C, Morgenstern M, Friederichs J, Augat P, Hackl S, Woltmann

A, et al. Comparative study suggests that human bone morphogenetic

proteins have no influence on the outcome of operative treatment of

aseptic clavicle non-unions. Int Orthop. 2016;40:2339–45.

Hackl S, Hierholzer C, Friederichs J, Woltmann A, Bühren V, von Rüden

C. Long-term outcome following additional rhBMP-7 application in

revision surgery of aseptic humeral, femoral, and tibial shaft nonunion.

BMC Musculoskelet Disord. 2017;18:342.

Dimitriou R, Dahabreh Z, Katsoulis E, Matthews SJ, Branfoot T, Giannoudis PV. Application of recombinant BMP-7 on persistent upper and

lower limb non-unions. Injury. 2005;36(Suppl 4):S51–9.

Kanakaris NK, Lasanianos N, Calori GM, Verdonk R, Blokhuis TJ, Cherubino P, et al. Application of bone morphogenetic proteins to femoral

non-unions: a 4-year multicentre experience. Injury. 2009;40(Suppl

3):S54–61.

Moghaddam A, Elleser C, Biglari B, Wentzensen A, Zimmermann G.

Clinical application of BMP 7 in long bone non-unions. Arch Orthop

Trauma Surg. 2010;130:71–6.

Papanagiotou M, Dailiana ZH, Karachalios T, Varitimidis S, Vlychou M,

Hantes M, et al. RhBMP-7 for the treatment of nonunion of fractures of

long bones. Bone Joint J. 2015;97-B(7):997–1003.

Morison Z, Vicente M, Schemitsch EH, McKee MD. The treatment of

atrophic, recalcitrant long-bone nonunion in the upper extremity with

human recombinant bone morphogenetic protein-7 (rhBMP-7) and

plate fixation: a retrospective review. Injury. 2016;47:356–63.

Giannoudis PV, Tzioupis C. Clinical applications of BMP-7: the UK perspective. Injury. 2005;36(Suppl 3):S47–50.

Fuchs T, Stolberg-Stolberg J, Michel PA, Garcia P, Amler S, Wähnert D,

et al. Effect of bone morphogenetic protein-2 in the treatment of long

bone non-unions. J Clin Med. 2021;10:4597.

Conway JD, Shabtai L, Bauernschub A, Specht SC. BMP-7 versus

BMP-2 for the treatment of long bone nonunion. Orthopedics.

2014;37:e1049–57.

Haubruck P, Tanner MC, Vlachopoulos W, Hagelskamp S, Miska M, Ober J,

et al. Comparison of the clinical effectiveness of bone morphogenic protein (BMP) −2 and −7 in the adjunct treatment of lower limb nonunions.

Orthop Traumatol Surg Res. 2018;104:1241–8.

Hannemann PF, Mommers EHH, Schots JPM, Brink PRG, Poeze M. The

effects of low-intensity pulsed ultrasound and pulsed electromagnetic

fields bone growth stimulation in acute fractures: a systematic review

and meta-analysis of randomized controlled trials. Arch Orthop Trauma

Surg. 2014;134:1093–106.

Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science.

1997;275:964–7.

Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone

marrow origin of endothelial progenitor cells responsible for postnatal

vasculogenesis in physiological and pathological neovascularization. Circ

Res. 1999;85:221–8.

Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al.

Ischemia- and cytokine-induced mobilization of bone marrowderived endothelial progenitor cells for neovascularization. Nat Med.

1999;5:434–8.

Losordo DW, Schatz RA, White CJ, Udelson JE, Veereshwarayya V, Durgin

M, et al. Intramyocardial transplantation of autologous CD34+ stem cells

for intractable angina: a phase I/IIa double-blind, randomized controlled

trial. Circulation. 2007;115:3165–72.

Kawamoto A, Katayama M, Handa N, Kinoshita M, Takano H, Horii M,

et al. Intramuscular transplantation of G-CSF-mobilized CD34(+) cells in

patients with critical limb ischemia: a phase I/IIa, multicenter, singleblinded, dose-escalation clinical trial. Stem Cells. 2009;27:2857–64.

Fujita Y, Kinoshita M, Furukawa Y, Nagano T, Hashimoto H, Hirami Y, et al.

Phase II clinical trial of CD34+ cell therapy to explore endpoint selection

and timing in patients with critical limb ischemia. Circ J. 2014;78:490–501.

Ohtake T, Mochida Y, Ishioka K, Oka M, Maesato K, Moriya H, et al. Autologous granulocyte colony-stimulating factor-mobilized peripheral blood

CD34 positive cell transplantation for hemodialysis patients with critical

limb ischemia: a prospective Phase II clinical trial. Stem Cells Transl Med.

2018;7:774–82.

Kuroda et al. BMC Medicine

(2023) 21:386

31. Long MW, Williams JL, Mann KG. Expression of human bone-related

proteins in the hematopoietic microenvironment. J Clin Invest.

1990;86:1387–95.

32. Chen JL, Hunt P, McElvain M, Black T, Kaufman S, Choi ES. Osteoblast

precursor cells are found in CD34+ cells from human bone marrow. Stem

Cells. 1997;15:368–77.

33. Dominici M, Pritchard C, Garlits JE, Hofmann TJ, Persons DA, Horwitz EM.

Hematopoietic cells and osteoblasts are derived from a common marrow

progenitor after bone marrow transplantation. Proc Natl Acad Sci USA.

2004;101:11761–6.

34. Ford JL, Robinson DE, Scammell BE. Endochondral ossification in fracture

callus during long bone repair: the localisation of “cavity-lining cells”

within the cartilage. J Orthop Res. 2004;22:368–75.

35. Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, et al.

Mesenchymal stem cells derived from CD133-positive cells in mobilized

peripheral blood and cord blood: proliferation, Oct4 expression, and

plasticity. Stem Cells. 2005;23:1105–12.

36. Laing AJ, Dillon JP, Condon ET, Street JT, Wang JH, McGuinness AJ, et al.

Mobilization of endothelial precursor cells: systemic vascular response to

musculoskeletal trauma. J Orthop Res. 2007;25:44–50.

37. Matsumoto T, Mifune Y, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, et al.

Fracture induced mobilization and incorporation of bone marrowderived endothelial progenitor cells for bone healing. J Cell Physiol.

2008;215:234–42.

38. Matsumoto T, Kawamoto A, Kuroda R, Ishikawa M, Mifune Y, Iwasaki

H, et al. Therapeutic potential of vasculogenesis and osteogenesis

promoted by peripheral blood CD34-positive cells for functional bone

healing. Am J Pathol. 2006;169:1440–57.

39. Mifune Y, Matsumoto T, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, et al.

Local delivery of granulocyte colony stimulating factor-mobilized CD34positive progenitor cells using bioscaffold for modality of unhealing

bone fracture. Stem Cells. 2008;26:1395–405.

40. Fukui T, Mifune Y, Matsumoto T, Shoji T, Kawakami Y, Kawamoto A, et al.

Superior potential of CD34-positive cells compared to total mononuclear

cells for healing of nonunion following bone fracture. Cell Transplant.

2015;24:1379–93.

41. Kuroda R, Matsumoto T, Niikura T, Kawakami Y, Fukui T, Lee SY, et al. Local

transplantation of granulocyte colony stimulating factor-mobilized

CD34+ cells for patients with femoral and tibial nonunion: pilot clinical

trial. Stem Cells Transl Med. 2014;3:128–34.

42. Fukuda M. Classification and treatment of diabetic retinopathy. Diabetes

Res Clin Pract. 1994;24 Suppl:S171–6.

43. Meinberg EG, Agel J, Roberts CS, Karam MD, Kellam JF. Fracture and dislocation classification compendium-2018. J Orthop Trauma. 2018;32(Suppl

1):S1–170.

44. Vannabouathong C, Sprague S, Bhandari M. Guidelines for fracture healing assessments in clinical trials. Part I: definitions and endpoint committees. Injury. 2011;42:314–6.

45. Kooistra BW, Dijkman BG, Busse JW, Sprague S, Schemitsch EH, Bhandari

M. The radiographic union scale in tibial fractures: reliability and validity. J

Orthop Trauma. 2010;24(Suppl 1):S81–6.

46. Chiavaras MM, Bains S, Choudur H, Parasu N, Jacobson J, Ayeni O, et al.

The radiographic union score for hip (RUSH): the use of a checklist to

evaluate hip fracture healing improves agreement between radiologists

and orthopedic surgeons. Skelet Radiol. 2013;42:1079–88.

47. Brazier JE, Harper R, Jones NM, O’Cathain A, Thomas KJ, Usherwood T,

et al. Validating the SF-36 health survey questionnaire: new outcome

measure for primary care. BMJ. 1992;305:160–4.

48. Johanson NA, Liang MH, Daltroy L, Rudicel S, Richmond J. American

Academy of Orthopaedic Surgeons lower limb outcomes assessment

instruments. Reliability, validity, and sensitivity to change. J Bone Joint

Surg Am. 2004;86:902–9.

49. Japanese Society of Chemotherapy, Antimicrobial Agents Safety Evaluation Standards Committee, Watanabe A, Tokue Y, Aoki N, Matsumoto

T, et al. Criteria for safety evaluation of antimicrobial agents. J Infect

Chemother. 2011;17:139–47.

50. Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous

bone-marrow grafting for nonunions. Influence of the number and

concentration of progenitor cells. J Bone Joint Surg Am. 2005;87:1430–7.

Page 16 of 16

51. Singh AK, Shetty S, Saraswathy JJ, Sinha A. Percutaneous autologous

bone marrow injections for delayed or non-union of bones. J Orthop

Surg (Hong Kong). 2013;21:60–4.

52. Sugaya H, Mishima H, Aoto K, Li M, Shimizu Y, Yoshioka T, et al. Percutaneous autologous concentrated bone marrow grafting in the treatment for

nonunion. Eur J Orthop Surg Traumatol. 2014;24:671–8.

53. Ismail HD, Phedy P, Kholinne E, Djaja YP, Kusnadi Y, Merlina M, et al. Mesenchymal stem cell implantation in atrophic nonunion of the long bones: a

translational study. Bone Joint Res. 2016;5:287–93.

54. Gómez-Barrena E, Padilla-Eguiluz N, Rosset P, Gebhard F, Hernigou P,

Baldini N, et al. Early efficacy evaluation of mesenchymal stromal cells

(MSC) combined to biomaterials to treat long bone non-unions. Injury.

2020;51(Suppl 1):S63–73.

55. Wang X, Chu W, Zhuang Y, Shi D, Tao H, Jin C, et al. Bone mesenchymal

stem cell-enriched β-tricalcium phosphate scaffold processed by the

screen-enrich-combine circulating system promotes regeneration of

diaphyseal bone non-union. Cell Transplant. 2019;28:212–23.

56. Gómez-Barrena E, Rosset P, Gebhard F, Hernigou P, Baldini N, Rouard H,

et al. Feasibility and safety of treating non-unions in tibia, femur and

humerus with autologous, expanded, bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric, non-comparative trial. Biomaterials. 2019;196:100–8.

57. Dufrane D, Docquier PL, Delloye C, Poirel HA, André W, Aouassar N.

Scaffold-free three-dimensional graft from autologous adipose-derived

stem cells for large bone defect reconstruction: clinical proof of concept.

Medicine. 2015;94:e2220.

58. Giannoudis PV, Gudipati S, Harwood P, Kanakaris NK. Long bone nonunions treated with the diamond concept: a case series of 64 patients.

Injury. 2015;46 Suppl 8:S48–54.

59. Ishida K, Matsumoto T, Sasaki K, Mifune Y, Tei K, Kubo S, et al. Bone

regeneration properties of granulocyte colony-stimulating factor via

neovascularization and osteogenesis. Tissue Eng Part A. 2010;16:3271–84.

60. Moukoko D, Pourquier D, Genovesio C, Thezenas S, Chabrand P, Roffino

S, et al. Granulocyte-colony stimulating factor enhances bone fracture

healing. Clin Biomech (Bristol Avon). 2018;58:62–8.

61. Kurniawan A, Kodrat E, Gani YI. Effectiveness of granulocyte colony

stimulating factor to enhance healing on delayed union fracture model

Sprague-Dawley rat. Ann Med Surg (Lond). 2021;61:54–60.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research ? Choose BMC and benefit from:

• fast, convenient online submission

• thorough peer review by experienced researchers in your field

• rapid publication on acceptance

• support for research data, including large and complex data types

• gold Open Access which fosters wider collaboration and increased citations

• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る