リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Investigation of the effects of electrolytes on radical cation species and electrode materials on anodic oxidation of styrenes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Investigation of the effects of electrolytes on radical cation species and electrode materials on anodic oxidation of styrenes

Imada, Yasushi 東京農工大学

2020.07.31

概要

Electro-organic chemistry has received a great attention as a powerftil and eco-friendly synthetic methodology While this methodology has strong points such as sustainability fecile manipulation and scalability one of the significant drawbacks is that there are many parameters to optimize. In particular; electrolytes and electrode materials have significant impact on reaction efficiency; Although these fectors can be issues in electrochemistiy they can also be the keys to control the reactions. Howevei; in the most cases the effects of electrolytes and electrode materials have not been disclosed. Thus, I decided to work on these two topics to illuminate their roles.

On another note, our laboratory has been developing electrochemical C_C bond formations via radical cation species. For examples, [4+2] cycloaddition (radical cation Diels-Alder reaction) and [2+2] cycloaddition were established. In both cases, electron transfer itself catalysts them, which means that only catalytic amount of electricity is sufficient to accomplish the reactions. This will be quite important technology to exploit “electron-catalytic” reactions more and more, resulting in dramatically decreasing the consumption of reagents. However; there is a critical issue to realize it. LiClO^/CHsNCk electrolyte solution is uniquely efficient for our developed reactions via radical cation intermediates, and the reason has not been clear for the last 20 years. Therefore, the strong motivation of elucidating it made me worked on it.

It was turned out that LiClCU,LiTFSI and LdFSI in nitroalkane have the effect of ensuring the inherent reactivity of radical cation species respectively 7Li NMR studies and raman spectroscopy showed that those Li salts form the contact ion pair and/or aggregation in CH3NO2 solution, that is, Li cations trap the corresponding anions. It is reasoned that radical cation species could be free in those solutions like in fluorinated alcohol solutions, leading to their higher reactivities. This was supported by cyclic voltammetry studies and experiment results of electrolysis. This discoveiy is crucial for C-C bond formation via radical cation in electrochemical reactions. Surprisingly this electrolyte effect had been unclear for the last 20 years.

Moreover; the newly discovered electrolyte, LiTFSI, was appHed for thermomorphic media, which enables the use of hydrophobic compounds in electrolyte and recycle of supporting electrotyte. This had not been possible with LiClOVCHsNCfe solution due to its high polarity LiTFSI can be dissolved in methylcyclohexane (Me-cHex)/l-nitropropane (l-NP), which is mixable at room temperature and separable at -50 °C. Hydrophobic products are recovered in the Me-cHex phase, and the left LiTFSI/l-NP is recyclable.

On another note, the effect of electrode materials on anodic oxidation of styrenes was also elucidated. Cyclic voltammetiy studies and experiments with modified electrodes exhibited that styrenes tend to be adsorbed on the surfece of carbon electrodes, leading to the better chance for dimerization. The feature enabled different fimctionalization of styrenes with oxygen by different electrode materials (tetrahydrofiiran formation on carbon electrode and C=C cleavage on platinum electrode). On both reactions, a variety of styrene derivatives were confirmed to react smoothly.

I beheve that these findings will be quite usefill for fiirther development of electrochemical reactions.

参考文献

9-1-1. Electro-organic chemistry

[1] (a) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230-13319.; (b) A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 5594-5619.; (c) Yoshida, J.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702-4730.; (d) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485-4540.

[2] J. Yoshida, S. Suga, S. Suzuki, N. Kinomura, A. Yamamoto, K. Fujiwara, J. Am. Chem. Soc. 1999, 121, 9546- 9549..

[3] (a) Y. Kawamata, M. Yan, Z. Liu, D. Bao, J. Chen, J. T. Starr, P. S. Baran, J. Am. Chem. Soc. 2017, 139, 7448-7451.; (b) E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature, 2016, 533, 77-81.; (c) Y. Imada, J. L. Röckl, A. Wiebe, T. Gieshoff, D. Schollmeyer, K. Chiba, R. Franke, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 12136-12140.

9-1-2. Electro-catalytic cycloadditions with unique electrolyte LiClO4/CH3NO2

[1] (a) Y. Okada, Y. Yamaguchi, A. Ozaki, K. Chiba, Chem. Sci. 2016, 7, 6387-6393.; (b) M. Arata, T. Miura, K. Chiba, Org. Lett. 2007, 9, 4347–4350; (b) Y. Okada, R. Akaba, K. Chiba, Org. Lett. 2009, 11, 1033-1035.; (c) Y. Okada, A. Nishimoto, R. Akaba, K. Chiba, J. Org. Chem. 2011, 76, 3470–3476; (d) T. Miura, S. Kim, Y. Kitano, M. Tada, K. Chiba, Angew. Chem. Int. Ed. 2006, 45, 1461-1463.; (e) Y. Okada, K. Chiba, Chem. Rev. 2018, 118, 4592-4630.

9-1-3. Styrene derivatives and their utility

[1] (a) H. Seo, A. Liu, T. F. Jamison, J. Am. Chem. Soc. 2017, 139, 13969-13972; (b) H. Huang, C. Yu, Y. Zhang, Y. Zhang, P. S. Mariano, W. Wang, J. Am. Chem. Soc. 2017, 139, 9799-9802; (c) F. Wu, L. Wang, J. Chen, D. A. Nicewicz, Y. Huang, Angew. Chem. Int. Ed. 2018, 57, 2174-2178.; (d) M. Utsunomiya, J. F. Hartwig, J. Am. Chem. Soc. 2003, 125, 14286-14287.; (e) K. MuÇiz, L. Barreiro, R. M. Romero, C. Martínez, J. Am. Chem. Soc. 2017, 139, 4354-4357.; (f) L. J. Xiao, L. Cheng, W. M. Feng, M. L. Li, J. H. Xie, Q. L. Zhou, Angew. Chem. Int. Ed. 2018, 57, 461-464.; g) N. J. W. Straathof, S. E. Cramer, V. Hessel, T. Noel, Angew. Chem. Int. Ed. 2016, 55, 15549-15553.; (h) D. J. Wilger, J.-M. M. Grandjean, T. R. Lammert, D. A. Nicewicz, Nat. Chem. 2014, 6, 720; (i) V. R. Yatham, Y. Shen, R. Martin, Angew. Chem. Int. Ed. 2017, 56, 10915-10919.; (j) J. P. Wan, Y. Gao, L. Wei, Chem. Asian J. 2016, 11, 2092-2102.; (h) L. Wang, F. Wu, J. Chen, D. A. Nicewicz, Y. Huang, Angew. Chem. Int. Ed. 2017, 56, 6896- 6900.

[2] (a) M. Zamfir, J. Lutz, Nat. Commun. 2012, 3, 1-8.; (b) X. Chen, L. Liu, M. Huo, M. Zeng, L. Peng, A. Feng, X. Wang, J. Yuan, Angew. Chem. Int. Ed. 2017, 56, 16541-16545.

[3] (a) W. Oppolzer, K. Keller, J. Am. Chem. Soc. 1971, 93, 3836-3837.; (b) K. A. Parker, D. Fokas, J. Am. Chem. Soc. 1992, 114, 9688-9689.; (c) G. Dujardin, M. Maudet, E. Brown, Tetrahedron Lett. 1997, 38, 1555-1558.

9-2-1. Understanding the effect of LiClO4 / NM on radical cation chemistry: Leading to the exploration of alternative electrolytes

[1] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363.

[2] N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075-10166.

[3] J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R. S. Varma, Chem. Rev. 2017, 117, 1445-1514.

[4] J. I. Yoshida, A. Shimizu, R. Hayashi, Chem. Rev. 2018, 118, 4702-4730.

[5] M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230-13319.

[6] A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 5594- 5619.

[7] N. Shida, Y. Imada, S. Nagahara, Y. Okada, K. Chiba, Commun. Chem. 2019, 2, 3-5.

[8] E. P. Farney, S. J. Chapman, W. B. Swords, M. D. Torelli, R. J. Hamers, T. P. Yoon, J. Am. Chem. Soc. 2019, 141, 6385-6391.

[9] Y. Okada, K. Chiba, Chem. Rev. 2018, 118, 4592-4630.

[10] Y. Okada, Y. Yamaguchi, A. Ozaki, K. Chiba, Chem. Sci. 2016, 7, 6387-6393.

[11] A. Ozaki, Y. Yamaguchi, Y. Okada, K. Chiba, Chinese J. Chem. 2019, 561-564.

[12] K. Nakayama, N. Maeta, G. Horiguchi, H. Kamiya, Y. Okada, Org. Lett. 2019, 21, 2246-2250.

[13] Y. Okada, N. Maeta, K. Nakayama, H. Kamiya, J. Org. Chem. 2018, 83, 4948-4962.

[14] K. Chiba, T. Miura, S. Kim, Y. Kitano, M. Tada, J. Am. Chem. Soc. 2001, 123, 11314-11315.

[15] M. Arata, T. Miura, K. Chiba, Org. Lett. 2007, 9, 4347-4350.

[16] Y. Okada, R. Akaba, K. Chiba, Org. Lett. 2009, 11, 1033-1035.

[17] Y. Okada, A. Nishimoto, R. Akaba, K. Chiba, J. Org. Chem. 2011, 76, 3470-3476.

[18] T. Miura, S. Kim, Y. Kitano, M. Tada, K. Chiba, Angew. Chem. Int. Ed. 2006, 45, 1461-1463.

[19] S. Sankararaman, R. Sudha, J. Org. Chem. 1999, 64, 2155-2157.

[20] M. Ayerbe, F. P. Cossío, Tetrahedron Lett. 1995, 36, 4447-4450.

[21] L. Eberson, M. P. Hartshorn, O. Persson, F. Radner, Chem. Commun. 1996, 0, 2105-2112.

[22] I. Colomer, A. E. R. Chamberlain, M. B. Haughey, T. J. Donohoe, Nat. Rev. Chem. 2017, 1, 0088.

[23] Y. Imada, Y. Yamaguchi, N. Shida, Y. Okada, K. Chiba, Chem. Commun. 2017, 53, 3960-3963.

[24] Y. Imada, N. Shida, Y. Okada, K. Chiba, Chinese J. Chem. 2019, 557-560.

[25] Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269-280.

[26] J. Wang, Y. Yamada, K. Sodeyama, C. H. Chiang, Y. Tateyama, A. Yamada, Nat. Commun. 2016, 7, 1-9.

[27] K. Kimura, J. Motomatsu, Y. Tominaga, J. Phys. Chem. C 2016, 120, 12385-12391.

[28] Y. Yamada, M. Yaegashi, T. Abe, A. Yamada, Chem. Commun. 2013, 49, 11194-11196.

[29] R. Tatara, D. G. Kwabi, T. P. Batcho, M. Tulodziecki, K. Watanabe, H.-M. Kwon, M. L. Thomas, K. Ueno, C. V. Thompson, K. Dokko, Y. Shao-Horn, M. Watanabe, J. Phys. Chem. C, 2017, 121, 9162-9172.

[30] S. Maeda, Y. Kameda, Y. Amo, T. Usuki, K. Ikeda, T. Otomo, M. Yanagisawa, S. Seki, N. Arai, H. Watanabe, Y. Umebayashi, J. Phys. Chem. B 2017, 121, 10979-10987.

[31] R. Tatara, K. Ueno, K. Dokko, M. Watanabe, ChemElectroChem, 2019, 6, 4444-4449.

[32] B. Klassen, R. Aroca, M. Nazri, G. A. Nazri, J. Phys. Chem. B 1998, 102, 4795-4801.

[33] J. Grondin, D. Talaga, J.-C. Lasségues, W. A. Henderson, Phys. Chem. Chem. Phys. 2004, 6, 938-944.

[34] J. Grondin, J.-C. Lasségues, M. Chami, L. Servant, D. Talagaa, W. A. Henderson, Phys. Chem. Chem. Phys. 2004, 6, 4260-4267.

[35] M. Chabanel, D. Legoff, K. Touaj, J. Chem. Soc., Faraday Trans. 1996, 92, 4199–4205.

[36] Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, J. Am. Chem. Soc. 2014, 136, 5039-5046.

[37] I. Colomer, C. Batchelor-Mcauley, B. Odell, T. J. Donohoe, R. G. Compton, J. Am. Chem. Soc. 2016, 138, 8855- 8861.

[38] A. D’Aprano, B. Sesta, A. Princi, J. Electroanal. Chem. 1993, 361, 135-141.

9-2-2. Application of LiTFSI / NM electrolyte for electrochemical radical cation Diels- Alder reaction with lipophilic compounds.

[1] For recent reviews, see: (a) Kärkäs, M. D. Chem. Soc. Rev. 2018, 47, 5786-5865. (b) Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 6018-6041. (c) Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 5594-5619. (d) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J. Chem. Rev. 2018, 118, 6706-6765. (e) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Chem. Rev. 2018, 118, 4834-4885. (f) Yoshida, J.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702-4730. (g) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485-4540. (h) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230-13319.

[2] For selected reviews, see: (a) Ischay, M. A.; Yoon, T. P. Eur. J. Org. Chem. 2012, 3359-3372. (b) Studer, A.; Curran, D. P. Nat. Chem. 2014, 6, 765-773. (c) Fukuzumi, S.; Ohkubo, K. Org. Biomol. Chem. 2014, 12, 6059-6071. (d) Luca, O. R.; Gustafson, J. L.; Maddox, S. M.; Fenwicka, A. Q.; Smith, D. C. Org. Chem. Front. 2015, 2, 823-848. (e) Qiu, G.; Li, Y.; Wu, J. Org. Chem. Front. 2016, 3, 1011-1027.

[3] Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492-2521.

[4] For selected examples, see: (a) Beil, S. B.; Müller, T.; Sillart, S. B.; Franzmann, P.; Bomm, A.; Holtkamp, M.; Karst, U.; Schade, W.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 2450-2454. (b) Gütz, C.; Selt, M.; Bänziger, M.; Bucher, C.; Römelt, C.; Hecken, N.; Gallou, F.; Galvão, T. R.; Waldvogel, S. R. Chem. Eur. J. 2015, 21, 13878- 13882. (c) Kulisch, J.; Nieger, M.; Stecker, F.; Fischer, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2011, 50, 5564- 5567. (d) Malkowsky, I. M.; Griesbach, U.; Pütter, H.; Waldvogel, S. R. Eur. J. Org. Chem. 2006, 4569-4572. (e) Zhao, H.-B.; Xu, P.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 15153-15156. (f) Imada, Y.; Okada, Y.; Noguchi, K.; Chiba, K. Angew. Chem., Int. Ed. 2019, 58, 125-129.

[5] For selected examples, see: (a) Horcajada, R.; Okajima, M.; Suga, S.; Yoshida, J. Chem. Commun. 2005, 1303-1305. (b) Tajima, T.; Nakajima, A.; Doi, Y.; Fuchigami, T. Angew. Chem., Int. Ed. 2007, 46, 3550-3552. (c) Tajima, T.; Nakajima, A. J. Am. Chem. Soc. 2008, 130, 10496-10497. (d) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Org. Lett. 2010, 12, 644-646.

[6] (a) Chiba, K.; Kono, Y.; Kim, S.; Nishimoto, K.; Kitano, Y.; Tada, M. Chem. Commun. 2002, 1766-1767. (b) Hayashi, K.; Kim, S.; Kono, Y.; Tamura, M.; Chiba, K. Tetrahedron Lett. 2006, 47, 171-174. (c) Kim, S.; Tsuruyama, A.; Ohmori, A.; Chiba, K. Chem. Commun. 2008, 1816-1818. (d) Kim, S.; Yamamoto, K.; Hayashi, K.; Chiba, K. Tetrahedron 2008, 64, 2855-2863. (e) Kim, S.; Ikuhisa, N.; Chiba, K. Chem. Lett. 2011, 40, 1077-1078.

[7] (a) Tanaka, F.; Arata, M.; Hayashi, K.; Kim, S.; Chiba, K. Electrochemistry 2006, 74, 625-627 (b) Nagano, T.; Mikami, Y.; Kim, S.; Chiba, K. Electrochemistry 2008, 76, 874-879. (c) Okada, Y.; Kamimura, K.; Chiba, K. Tetrahedron 2012, 68, 5857-5862.

[8] (a) Okada, Y.; Chiba, K. Chem. Rev. 2018, 118, 4592-4630. (b) Okada, Y.; Yamaguchi, Y.; Ozaki, A.; Chiba, K. Chem. Sci. 2016, 7, 6387-6393. (c) Yamaguchi, Y.; Okada, Y.; Chiba, K. J. Org. Chem. 2013, 78, 2626-2638. (d) Okada, Y.; Nishimoto, A.; Akaba, R.; Chiba, K. J. Org. Chem. 2011, 76, 3470-3476.

[9] Imada, Y.; Yamaguchi, Y.; Shida, N.; Okada, Y.; Chiba, K. Chem. Commun. 2017, 53, 3960-3963.

[10] (a) Kim, S.; Noda, S.; Hayashi, K.; Chiba, K. Org. Lett. 2008, 10, 1827-1830. (b) Okada, Y.; Chiba, K. Electrochim. Acta 2010, 55, 4112-4119. (c) Okada, Y.; Yoshioka, T.; Koike, M.; Chiba, K. Tetrahedron Lett. 2011, 52, 4690-4693. (d) Okada, Y.; Yamaguchi, Y.; Chiba, K. Eur. J. Org. Chem. 2012, 243-246.

[11] (a) Shoji, T.; Kim, S.; Chiba, K. Angew. Chem., Int. Ed. 2017, 56, 4011-4014. (b) Okamoto, K.; Shoji, T.; Tsutsui, M.; Shida, N.; Chiba, K. Chem. Eur. J. 2018, 24, ,17902-17905.

9.3 Electrode material selective functionalization of styrenes with oxygen: olefin cleavage and tetrahydrofurans formation

[1] a) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230-13319; b) J.I. Yoshida, A. Shimizu, R. Hayashi, Chem. Rev. 2018, 118, 4702-4730 ; c) N. Fu, G. S. Sauer, A. Saha, A. Loo, S. Lin, Science, 2017, 357, 575-579.; d) S. Tang, S. Wang, Y. Liu, H. Cong, A. Lei, Angew. Chem. Int. Ed. 2018, 57, 4737-4741; Angew. Chem. 2018, 130, 4827-4831; e) Z. W. Hou, Z. Y. Mao, H. B. Zhao, Y. Y. Melcamu, X. Lu, J. Song, H. C. Xu, Angew. Chem. Int. Ed. 2016, 55, 9168–9172; Angew. Chem. 2016, 128, 9314-9318.; f) Y. F. Liang, R. Steinbock, A. Münch, D. Stalke, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 5384-5388; Angew. Chem. 2018, 130, 5482-5486.

[2] J. Kulisch, M. Nieger, F. Stecker, A. Fischer, S. R. Waldvogel, Angew. Chem. Int. Ed. 2011, 50, 5564-5567; Angew. Chem. 2011, 123, 5678-5682.

[3] a) Y. Okada, K. Chiba, Chem. Rev. 2018, 118, 4592-4630; b) Y. Imada, Y. Yamaguchi, N. Shida, Y. Okada, K. Chiba, Chem. Commun. 2017, 53, 3960-3963.

[4] T. Gieshoff, D. Schollmeyer, S. R. Waldvogel, Angew. Chem. Int. Ed. 2016, 55, 9437-9440; Angew. Chem. 2016, 128, 9587-9590.

[5] T. Shoji, S. Kim, K. Chiba, Angew. Chem. Int. Ed. 2017, 56, 4011-4014 ; Angew. Chem. 2017, 129, 4069-4072.

[6] a) A. Medici, P. Pedrini, A. DeBattisti, G. Fantin, M. Fogagnolo, A. Guerrini, Steroids, 2001, 66, 63–69; b) I.M. Malkowsky, U. Griesbach, H. Pütter, S. R. Waldvogel, Eur. J. Org. Chem. 2006, 4569-4572. ; c) S. B. Beil, T. Müller, S. B. Sillart, P. Franzmann, A. Bomm, M. Holtkamp, U. Karst, W. Schade, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 2450–2454; Angew. Chem. 2018, 130, 2475-2479.

[7] C. Gütz, M. Selt, M. Bänziger, C. Bucher, C. Rçmelt, N. Hecken, F. Gallou, T. R. Galvo, S. R. Waldvogel, Chem. Eur. J. 2015, 21, 13878-13882.

[8] I. M. Malkowsky, C. E. Rommel, K. Wedeking, R. Frçhlich, K. Bergander, M. Nieger, C. Quaiser, U. Griesbach, H. Pütter, S. R. Waldvogel, Eur. J. Org. Chem. 2006, 241-245.

[9] H. Zhao, P. Xu, J. Song, H. Xu, Angew. Chem. Int. Ed. 2018, 57, 15153-15156; Angew. Chem. 2018, 130, 15373-15376.

[10] M. C. Figueiredo, V. Trieu, S. Eiden, M. T. M. Koper, J. Am. Chem. Soc. 2017, 139, 14693-14698.

[11] H. Seo, A. Liu, T. F. Jamison, J. Am. Chem. Soc. 2017, 139, 13969-13972.

[12] a) H. Huang, C. Yu, Y. Zhang, Y. Zhang, P. S. Mariano, W. Wang, J. Am. Chem. Soc. 2017, 139, 9799-9802; b) F. Wu, L. Wang, J. Chen, D. A. Nicewicz, Y. Huang, Angew. Chem. Int. Ed. 2018, 57, 2174-2178; Angew. Chem. 2018, 130, 2196-2200.

[13] a) M. Utsunomiya, J. F. Hartwig, J. Am. Chem. Soc. 2003, 125, 14286-14287.; b) K. MuÇiz, L. Barreiro, R. M. Romero, C. Martínez, J. Am. Chem. Soc. 2017, 139, 4354-4357.

[14] a) L. J. Xiao, L. Cheng, W. M. Feng, M. L. Li, J. H. Xie, Q. L. Zhou, Angew. Chem. Int. Ed. 2018, 57, 461-464; Angew. Chem. 2018, 130, 470-473.; b) N. J. W. Straathof, S. E. Cramer, V. Hessel, T. Noel, Angew. Chem. Int. Ed. 2016, 55, 15549-15553; Angew. Chem. 2016, 128, 15778-15782.; c) D. J. Wilger, J.-M. M. Grandjean, T. R. Lammert, D. A. Nicewicz, Nat. Chem. 2014, 6, 720; d) V. R. Yatham, Y. Shen, R. Martin, Angew. Chem. Int. Ed. 2017, 56, 10915- 10919; Angew. Chem. 2017, 129, 11055-11059.

[15] a) J. P. Wan, Y. Gao, L. Wei, Chem. Asian J. 2016, 11, 2092–2102.; b) A. Rubinstein, P. J. Lozanao, J. J. Carbó, J. M. Poblet, R. Neumann, J. Am. Chem. Soc. 2014, 136, 10941-10948.; c) M. M. Hossain, S. G. Shyu, Tetrahedron 2014, 70, 251-255.; d) R. Lin, F. Chen, N. Jiao, Org. Lett. 2012, 14, 4158-4161.; e) G. Z. Wang, X. L. Li, J. J. Dai, H. J. Xu, J. Org. Chem. 2014, 79, 7220-7225.; f) A. K. Singh, R. Chawla, L. D. S. Yadav, Tetrahedron Lett. 2015, 56, 653-656.; g) E. L. Clennan, G. I. Pan, Org. Lett. 2003, 5, 4979-4982.; h) K. Suga, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A 2003, 107, 4339-4346.; i) Y. Deng, X. J. Wei, H. Wang, Y. Sun, T. No l, X. Wang, Angew. Chem. Int. Ed. 2017, 56, 832–836; Angew. Chem. 2017, 129, 850-854.; j) T. Wang, N. Jiao, J. Am. Chem. Soc. 2013, 135, 11692-11695.; k) X. Wu, A. P. Davis, A. J. Fry, Org. Lett. 2007, 9, 5633-5636.

[16] S. G. Van Ornum, R. M. Champeau, R. Pariza, Chem. Rev. 2006, 106, 2990-3001.

[17] a) N. L. Bauld, R. Pabon, J. Am. Chem. Soc. 1983, 105, 633–634; b) L. Wang, F. Wu, J. Chen, D. A. Nicewicz, Y. Huang, Angew. Chem. Int. Ed. 2017, 56, 6896-6900; Angew. Chem. 2017, 129, 7000-7004.; c) S. Lin, M. A. Ischay, C. G. Fry, T. P. Yoon, J. Am. Chem. Soc. 2011, 133, 19350-19353.; d) J. Zhao, J. L. Brosmer, Q. Tang, Z. Yang, K. N. Houk, P. L. Diaconescu, O. Kwon, J. Am. Chem. Soc. 2017, 139, 9807-9810.; e) Y. Okada, Y. Yamaguchi, A. Ozaki, K. Chiba, Chem. Sci. 2016, 7, 6387-6393.

[18] a) R. J. Perkins, H. C. Xu, J. M. Campbell, K. D. Moeller, Beilstein J. Org. Chem. 2013, 9, 1630-1636,; b) C. Cai, H. Xu, Nat. Commun. 2018, 9, 3551.

[19] R. B. Teponno, S. Kusari, M. Spiteller, Nat. Prod. Rep. 2016, 33, 1044-1092.

[20] CCDC 1861076 and 1861075 (trans-3 c, cis-9 c) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

[21] Q. Li, C. Batchelor-Mcauley, N. S. Lawrence, R. S. Hartshorne, R. G. Compton, J. Electroanal. Chem. 2013, 688, 328-335.

[22] M. Katz, P. Riemenschneider, H. Wendt, Electrochim. Acta 1972, 17, 1595-1607.

[23] C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, G. C. Bazan, Adv. Mater. 2011, 23, 2367-2371.

[24] M. Swart, T. V. D. Wijst, C. F. Guerra, F. M. Bickelhaupt, J. Mol. Model. 2007, 13, 1245-1257.

[25] a) U. Akbulut, J. E. Fernandez, R. L. Birke, J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 133-149.; b) U. Akbulut, S. Eren, L. K. Toppare, Polymer 1984, 25, 1028-1030.

[26] Y. Zhang, G. Jin, Z. Yang, H. Zhao, Microchim. Acta, 2004, 147, 225-230.

[27] a) M. Shao, P. Liu, R. R. Adzic, J. Am. Chem. Soc. 2006, 128, 7408-7409.; b) S. L. McLellan, Diss. Abstr. B 1975, 36, 744.

[28] T. Ozawa, A. Hanaki, H. Yamamoto, FEBS Lett. 1977, 74, 99–102.

[29] a) J. M. McCord, I. Fridovich, J. Biol. Chem. 1969, 244, 6049–6055; b) D. Vasudevan, H. Wendt, J. Electroanal. Chem. 1995, 392, 69-74.; c) D. W. Sawyer, J. L. Roberts, J. Electroanal. Chem. 1966, 12, 90-101.

[30] A. A. Frimer, Chem. Rev. 1979, 79, 359-387.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る