リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Febuxostat treatment attenuates oxidative stress and inflammation due to ischemia-reperfusion injury through the necrotic pathway in skin flap of animal model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Febuxostat treatment attenuates oxidative stress and inflammation due to ischemia-reperfusion injury through the necrotic pathway in skin flap of animal model

Odake Kazuya 三重大学

2022.07.20

概要

Background: Ischemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which is a serious complication of reconstructive surgery. The purpose of this study was to evaluate the protective effect of treatment with febuxostat, a selective xanthine oxidase inhibitor, on I/R injury in the skin flap of an animal (rat) model. Methods: Superficial epigastric flaps were raised in Sprague-Dawley rats and subjected to ischemia for 3h. Febuxostat at a dose of 10 mg/kg/day was administered to rats in drinking water from 1 week before the surgery (Feb group). Control animals received no drugs (Con group). The mean ratio of flap survival and contraction was evaluated and compared between animals with and without administration of febuxostat on day 5 after the surgery. In addition, infiltration by polymorphonuclear leukocytes and muscles of the panniculus carnosus in the flap were histologically evaluated using hematoxylin-eosin staining. Furthermore, xanthine oxidase activity, ATP levels, superoxide dismutase activity, and expression of 8-hydroxy-2’-deoxyguanosine (8-OHdG), tumor necrosis factor-α, and interleukin-1β were quantitatively assessed in the skin flap 24 h after the surgery.
Results: In the Feb group, the survival and contraction rates at the 5 d timepoint post-surgery were significantly higher and lower than those in the Con group, respectively. Histological analysis showed significant reduction in polymorphonuclear leukocyte infiltration and muscle injury scores due to I/R injury in the Feb group. The expression of 8-OHdG was also significantly inhibited in animals administered febuxostat. Biochemical analysis showed a significant reduction in xanthine oxidase activity and significant increases in ATP levels and superoxide dismutase activity in the Feb group. Furthermore, the expression of interleukin-1β was significantly lower in the Feb group than in the Con group.
Conclusion: Febuxostat, which is clinically used for the treatment of hyperuricemia, was effective against necrosis of the skin flap via inhibition of oxidative stress and inflammation caused by I/R injury.

参考文献

[1] D.T. Bui, P.G. Cordeiro, Q.Y. Hu, J.J. Disa, A. Pusic, B.J. Mehrara, Free flap reexploration: indications, treatment, and outcomes in 1193 free flaps, Plast. Reconstr. Surg. 119 (7) (2007) 2092–2100.

[2] K.T. Lee, G.H. Mun, The efficacy of postoperative antithrombotics in free flap surgery: a systematic review and meta-analysis, Plast. Reconstr. Surg. 135 (4) (2015) 1124–1139.

[3] D.L. Carden, D.N. Granger, Pathophysiology of ischaemia-reperfusion injury, J. Pathol. 190 (3) (2000) 255–266.

[4] T. Uemura, M. Tsujii, K. Akeda, T. Iino, H. Satonaka, M. Hasegawa, A. Sudo, Transfection of nuclear factor-kappaB decoy oligodeoxynucleotide protects against ischemia/reperfusion injury in a rat epigastric flap model, J. Gene Med. 14 (11) (2012) 623–631.

[5] K. Hori, M. Tsujii, T. Iino, H. Satonaka, T. Uemura, K. Akeda, M. Hasegawa, A. Uchida, A. Sudo, Protective effect of edaravone for tourniquet-induced ischemia- reperfusion injury on skeletal muscle in murine hindlimb, BMC Muscoskel. Disord. 14 (2013) 113.

[6] J. Gonza´lez-Montero, R. Brito, A.I. Gajardo, R. Rodrigo, Myocardial reperfusion injury and oxidative stress: therapeutic opportunities, World J. Cardiol. 10 (9) (2018) 74–86.

[7] H. Liu, W. Wang, X. Weng, H. Chen, Z. Chen, Y. Du, X. Liu, L. Wang, The H3K9 histone methyltransferase G9a modulates renal ischemia reperfusion injury by targeting Sirt1, Free Radic. Biol. Med. 172 (2021) 123–135.

[8] P. Bhargava, R.G. Schnellmann, Mitochondrial energetics in the kidney, Nat. Rev. Nephrol. 13 (10) (2017) 629–646.

[9] D.B. Zorov, C.R. Filburn, L.O. Klotz, J.L. Zweier, S.J. Sollott, Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes, J. Exp. Med. 192 (7) (2000) 1001–1014.

[10] D.B. Zorov, M. Juhaszova, S.J. Sollott, Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev. 94 (3) (2014) 909–950.

[11] J. Kamarauskaite, R. Baniene, D. Trumbeckas, A. Strazdauskas, S. Trumbeckaite, Caffeic acid phenethyl ester protects kidney mitochondria against ischemia/ reperfusion induced injury in an in vivo rat model, Antioxidants 10 (5) (2021).

[12] M. Xie, G.W. Cho, Y. Kong, D.L. Li, F. Altamirano, X. Luo, C.R. Morales, N. Jiang, G. G. Schiattarella, H.I. May, J. Medina, J.M. Shelton, A. Ferdous, T.G. Gillette, J. A. Hill, Activation of Autophagic Flux Blunts Cardiac Ischemia/Reperfusion Injury, Circulation research, 2021.

[13] U.Z. Malik, N.J. Hundley, G. Romero, R. Radi, B.A. Freeman, M.M. Tarpey, E. E. Kelley, Febuxostat inhibition of endothelial-bound XO: implications for targeting vascular ROS production, Free Radic. Biol. Med. 51 (1) (2011) 179–184.

[14] H. Tsuda, N. Kawada, J.Y. Kaimori, H. Kitamura, T. Moriyama, H. Rakugi, S. Takahara, Y. Isaka, Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress, Biochem. Biophys. Res. Commun. 427 (2) (2012) 266–272.

[15] S. Wang, Y. Li, X. Song, X. Wang, C. Zhao, A. Chen, P. Yang, Febuxostat pretreatment attenuates myocardial ischemia/reperfusion injury via mitochondrial apoptosis, J. Transl. Med. 13 (2015) 209.

[16] A.N. Fahmi, G.S. Shehatou, A.M. Shebl, H.A. Salem, Febuxostat protects rats against lipopolysaccharide-induced lung inflammation in a dose-dependent manner, N. Schmied. Arch. Pharmacol. 389 (3) (2016) 269–278.

[17] H. Kataoka, K. Yang, K.L. Rock, The xanthine oxidase inhibitor Febuxostat reduces tissue uric acid content and inhibits injury-induced inflammation in the liver and lung, Eur. J. Pharmacol. 746 (2015) 174–179.

[18] G. Huang, Y. Lin, M. Fang, D. Lin, Protective effects of icariin on dorsal random skin flap survival: an experimental study, Eur. J. Pharmacol. 861 (2019) 172600.

[19] F. Faul, E. Erdfelder, A.G. Lang, A. Buchner, G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences, Behav. Res. Methods 39 (2) (2007) 175–191.

[20] J. Nomura, N. Busso, A. Ives, C. Matsui, S. Tsujimoto, T. Shirakura, M. Tamura, T. Kobayashi, A. So, Y. Yamanaka, Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice, Sci. Rep. 4 (2014) 4554.

[21] K. Gideroglu, F. Yilmaz, F. Aksoy, G. Bugdayci, I. Saglam, F. Yimaz, Montelukast protects axial pattern rat skin flaps against ischemia/reperfusion injury, J. Surg. Res. 157 (2) (2009) 181–186.

[22] J. Araki, H. Kato, K. Doi, S. Kuno, K. Kinoshita, K. Mineda, K. Kanayama, K. Yoshimura, Application of normobaric hyperoxygenation to an ischemic flap and a composite skin graft, Plast Reconstr Surg Glob Open 2 (5) (2014) e152.

[23] M.C. McCormack, E. Kwon, K.R. Eberlin, M. Randolph, D.S. Friend, A.C. Thomas, M.T. Watkins, W.G. Austen Jr., Development of reproducible histologic injury severity scores: skeletal muscle reperfusion injury, Surgery 143 (1) (2008) 126–133.

[24] Y. Kanda, Investigation of the freely available easy-to-use software ’EZR’ for medical statistics, Bone Marrow Transplant. 48 (3) (2013) 452–458.

[25] D. Xin, R. Quan, L. Zeng, C. Xu, Y. Tang, Lipoxin A4 protects rat skin flaps against ischemia-reperfusion injury through inhibiting cell apoptosis and inflammatory response induced by endoplasmic reticulum stress, Ann. Transl. Med. 8 (17) (2020) 1086.

[26] A.N. Shafik, Febuxostat improves the local and remote organ changes induced by intestinal ischemia/reperfusion in rats, Dig. Dis. Sci. 58 (3) (2013) 650–659.

[27] M. Yamaguchi, K. Okamoto, T. Kusano, Y. Matsuda, G. Suzuki, A. Fuse, H. Yokota, The effects of xanthine oxidoreductase inhibitors on oxidative stress markers following global brain ischemia reperfusion injury in C57bl/6 mice, PLoS One 10 (7) (2015), e0133980.

[28] M.Y. Wu, G.T. Yiang, W.T. Liao, A.P. Tsai, Y.L. Cheng, P.W. Cheng, C.Y. Li, C.J. Li, Current mechanistic concepts in ischemia and reperfusion injury, cellular physiology and biochemistry, international journal of experimental cellular physiology, biochemistry, and pharmacology 46 (4) (2018) 1650–1667.

[29] A. Daiber, Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species, Biochim. Biophys. Acta 1797 (6–7) (2010) 897–906.

[30] S. Dikalov, Cross talk between mitochondria and NADPH oxidases, Free Radic. Biol. Med. 51 (7) (2011) 1289–1301.

[31] M.J. Im, J.E. Hoopes, Y. Yoshimura, P.N. Manson, G.B. Bulkley, Xanthine:acceptor oxidoreductase activities in ischemic rat skin flaps, J. Surg. Res. 46 (3) (1989) 230–234.

[32] R. Rees, D. Smith, T.D. Li, B. Cashmer, W. Garner, J. Punch, D.J. Smith Jr., The role of xanthine oxidase and xanthine dehydrogenase in skin ischemia, J. Surg. Res. 56 (2) (1994) 162–167.

[33] J. Nomura, N. Busso, A. Ives, S. Tsujimoto, M. Tamura, A. So, Y. Yamanaka, Febuxostat, an inhibitor of xanthine oxidase, suppresses lipopolysaccharide- induced MCP-1 production via MAPK phosphatase-1-mediated inactivation of JNK, PLoS One 8 (9) (2013), e75527.

[34] V. Kolek, I. Gryg´arkov´a, L. Koubkova´, J. Skˇriˇckov´a, J. Sˇvecov´a, D. Sixtova´, J. Bartoˇs, A. Tichop´ad, Carboplatin with intravenous and subsequent oral administration of vinorelbine in resected non-small-cell-lung cancer in real-world set-up, PLoS One 12 (7) (2017), e0181803.

[35] W.J. Loos, G. Stoter, J. Verweij, J.H. Schellens, Sensitive high-performance liquid chromatographic fluorescence assay for the quantitation of topotecan (SKF 104864-A) and its lactone ring-opened product (hydroxy acid) in human plasma and urine, J. Chromatogr. B Biomed. Appl. 678 (2) (1996) 309–315.

[36] M.H. Schmid, C. Meuli-Simmen, J. Hafner, Repair of cutaneous defects after skin cancer surgery, Recent results in cancer research, Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer 160 (2002) 225–233.

[37] S.A. Robertson, J.A. Jeevaratnam, A. Agrawal, R.I. Cutress, Mastectomy skin flap necrosis: challenges and solutions, in: Breast Cancer, 9, Dove Medical Press), 2017, pp. 141–152.

[38] A.O. Cetin, M. Omar, S. Calp, H. Tunca, N. Yimaz, B. Ozseker, O. Tanriverdi, Hyperuricemia at the time of diagnosis is a factor for poor prognosis in patients with stage II and III colorectal cancer (uric acid and colorectal cancer), Asian Pac. J. Cancer Prev. APJCP : Asian Pac. J. Cancer Prev. APJCP 18 (2) (2017) 485–490.

[39] S. Wang, X. Liu, Z. He, X. Chen, W. Li, Hyperuricemia has an adverse impact on the prognosis of patients with osteosarcoma, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 37 (1) (2016) 1205–1210.

[40] J. Yan, C. Zhu, Hyperuricemia is a adverse prognostic factor for colon cancer patients, Int. J. Gen. Med. 14 (2021) 3001–3006.

[41] M.G. Battelli, M. Bortolotti, L. Polito, A. Bolognesi, Metabolic syndrome and cancer risk: the role of xanthine oxidoreductase, Redox biology 21 (2019) 101070.

[42] A.J. Maxwell, K.A. Bruinsma, Uric acid is closely linked to vascular nitric oxide activity. Evidence for mechanism of association with cardiovascular disease, J. Am. Coll. Cardiol. 38 (7) (2001) 1850–1858.

[43] S.I. Khan, R.K. Malhotra, N. Rani, A.K. Sahu, A. Tomar, S. Garg, T.C. Nag, R. Ray, S. Ojha, D.S. Arya, J. Bhatia, Febuxostat modulates MAPK/NF-κBp65/TNF-α signaling in cardiac ischemia-reperfusion injury, Oxidative medicine and cellular longevity (2017) 8095825, 2017.

[44] X.H. Dong, H. Liu, M.Z. Zhang, P.X. Zhao, S. Liu, Y. Hao, Y.B. Wang, Postconditioning with inhaled hydrogen attenuates skin ischemia/reperfusion injury through the RIP-MLKL-PGAM5/Drp1 necrotic pathway, Am. J. Tourism Res. 11 (1) (2019) 499–508.

[45] N. Wang, G. Song, Y. Yang, W. Yuan, M. Qi, Inactivated Lactobacillus promotes protection against myocardial ischemia-reperfusion injury through NF-κB pathway, Biosci. Rep. 37 (6) (2017).

[46] A.T. Pokorny, D.A. Bright, C.W. Cummings, The effects of allopurinol and superoxide dismutase in a rat model of skin flap necrosis, Arch. Otolaryngol. Head Neck Surg. 115 (2) (1989) 207–212.

[47] S. Suzuki, N. Yoshioka, N. Isshiki, H. Hamanaka, Y. Miyachi, Involvement of reactive oxygen species in post-ischaemic flap necrosis and its prevention by antioxidants, Br. J. Plast. Surg. 44 (2) (1991) 130–134.

[48] M.J. Im, P.N. Manson, G.B. Bulkley, J.E. Hoopes, Effects of superoxide dismutase and allopurinol on the survival of acute island skin flaps, Ann. Surg. 201 (3) (1985) 357–359.

[49] A.A. Khan, J.T. Paget, M. McLaughlin, J.N. Kyula, M.J. Wilkinson, T. Pencavel, D. Mansfield, V. Roulstone, R. Seth, M. Halle, N. Somaiah, J.K.R. Boult, S. P. Robinson, H.S. Pandha, R.G. Vile, A.A. Melcher, P.A. Harris, K.J. Harrington, Genetically modified lentiviruses that preserve microvascular function protect against late radiation damage in normal tissues, Sci. Transl. Med. 10 (425) (2018).

[50] J.N. Peoples, A. Saraf, N. Ghazal, T.T. Pham, J.Q. Kwong, Mitochondrial dysfunction and oxidative stress in heart disease, Exp. Mol. Med. 51 (12) (2019) 1–13.

[51] L.A. MacMillan-Crow, J.P. Crow, J.A. Thompson, Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues, Biochemistry 37 (6) (1998) 1613–1622.

[52] L.A. MacMillan-Crow, J.P. Crow, J.D. Kerby, J.S. Beckman, J.A. Thompson, Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts, Proc. Natl. Acad. Sci. U.S.A. 93 (21) (1996) 11853–11858.

[53] S.V. Mantha, M. Prasad, J. Kalra, K. Prasad, Antioxidant enzymes in hypercholesterolemia and effects of vitamin E in rabbits, Atherosclerosis 101 (2) (1993) 135–144.

[54] M. Alshahawey, S.M. Shaheen, T. Elsaid, N.A. Sabri, Effect of febuxostat on oxidative stress in hemodialysis patients with endothelial dysfunction: a randomized, placebo-controlled, double-blinded study, Int. Urol. Nephrol. 51 (9) (2019) 1649–1657.

[55] Y. Zhang, H. Zhou, W. Wu, C. Shi, S. Hu, T. Yin, Q. Ma, T. Han, Y. Zhang, F. Tian, Y. Chen, Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca(2+)-XO-ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways, Free Radic. Biol. Med. 95 (2016) 278–292.

[56] H. Zhou, S. Toan, Pathological roles of mitochondrial oxidative stress and mitochondrial dynamics in cardiac microvascular ischemia/reperfusion injury, Biomolecules 10 (1) (2020).

[57] T. Taniguchi, K. Omura, K. Motoki, M. Sakai, N. Chikamatsu, N. Ashizawa, T. Takada, T. Iwanaga, Hypouricemic agents reduce indoxyl sulfate excretion by inhibiting the renal transporters OAT1/3 and ABCG2, Sci. Rep. 11 (1) (2021) 7232.

[58] K. Fujii, A. Kubo, K. Miyashita, M. Sato, A. Hagiwara, H. Inoue, M. Ryuzaki, M. Tamaki, T. Hishiki, N. Hayakawa, Y. Kabe, H. Itoh, M. Suematsu, Xanthine oxidase inhibitor ameliorates postischemic renal injury in mice by promoting resynthesis of adenine nucleotides, JCI insight 4 (22) (2019).

[59] J.A. Honorat, Y. Nakatsuji, M. Shimizu, M. Kinoshita, H. Sumi-Akamaru, T. Sasaki, K. Takata, T. Koda, A. Namba, K. Yamashita, E. Sanda, M. Sakaguchi, A. Kumanogoh, T. Shirakura, M. Tamura, S. Sakoda, H. Mochizuki, T. Okuno, Febuxostat ameliorates secondary progressive experimental autoimmune encephalomyelitis by restoring mitochondrial energy production in a GOT2- dependent manner, PLoS One 12 (11) (2017), e0187215.

[60] X. Ma, Y. Lin, Y. Liu, W. Li, J. He, M. Fang, D. Lin, Effects of apigenin treatment on random skin flap survival in rats, Front. Pharmacol. 12 (2021) 625733.

[61] A.B. Nair, S. Jacob, A simple practice guide for dose conversion between animals and human, J. Basic Clin. Pharm. 7 (2) (2016) 27–31.

[62] L.A. Picard-Ami Jr., A. MacKay, C.L. Kerrigan, Pathophysiology of ischemic skin flaps: differences in xanthine oxidase levels among rats, pigs, and humans, Plast. Reconstr. Surg. 87 (4) (1991) 750–755.

[63] L.A. Picard-Ami Jr., A. MacKay, C.L. Kerrigan, Effect of allopurinol on the survival of experimental pig flaps, Plast. Reconstr. Surg. 89 (6) (1992) 1098–1103.

[64] M.F. Angel, C.G. Mellow, K.R. Knight, S.A. Coe, B.M. O’Brien, A biochemical study of acute ischemia in rodent skin free flaps with and without prior elevation, Ann. Plast. Surg. 26 (5) (1991) 419–424. ; discussion 425-6.

[65] M. Katerji, M. Filippova, P. Duerksen-Hughes, Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field, Oxidative Medicine and Cellular Longevity 2019, 2019, p. 1279250.

[66] A. Ives, J. Nomura, F. Martinon, T. Roger, D. LeRoy, J.N. Miner, G. Simon, N. Busso, A. So, Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation, Nat. Commun. 6 (2015) 6555.

参考文献をもっと見る