リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「5. Geochemistry and Environmental Science」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

5. Geochemistry and Environmental Science

京都大学

2021.08

概要

INTRODUCTION: Technetium-99 is a pure beta emit- ter with a half-life of 2.11x105 (y) and is a fission product with its yield of 6.0%. Technetium forms anionic TcO - to be mobile species under oxidic condition. Hence, its mi- gration behavior in the environment is an important re- search field for the safety assessment on the disposal of high-level radioactive waste [1]. Investigations on the in- teraction of 99Tc with various materials in the environment require methods other than radiation measurement, such as spectrophotometry, due to its weak radioactivity. In this re- port the production of adequate amount of 99Tc tracer was investigated.

EXPERIMENTS: Technetium-99 was produced by the neutron irradiation of natural isotopic molybdenum. A 2 g of MoO3 powder was encapsulated in a quartz test tube under vacuum and the test tube was placed in an aluminum capsule filled with water. The capsule was irradiated for 47 hours at the reactor power of 1 MW and then for 6 hours at 5 MW in the Hydraulic Conveyer Facility (Hyd.) of the Kyoto University Reactor (KUR). Technetium-99 was re- covered by solvent extraction at 75 days after irradiation. The MoO3 powder irradiated was dissolved with NaOH and then contacted with methyl ethyl ketone (MEK) [2]. The radioactivity of NaOH and MEK phase was measured by -spectrometry. The amount of 99Tc produced was eval- uated from the radioactivity of 99mTc by assuming that 99mTc was in radioactive equilibrium with 99Mo at the end of irradiation.

RESULTS: The gamma ray spectrum of initial NaOH solution in the Fig. 1 shows no 145 keV gamma ray line of 99mTc on the contrary strong lines of 134Cs and 124Sb. The line of 99mTc is found in MEK solution after the solvent extraction, which yielded the distribution ratio of 134Cs and 124Sb was lower than 1/1000. Theses impurities would be completely removed by repeated solvent extraction. Be-sides 99mTc, in Fig. 1 shows the 155 keV line of 188Re, which was determined by its half-life of 0.71 d in Fig. 2. It is reasonable that 188Re was produced from tungsten as an impurity in MoO3. Tungsten is a homologous element of molybdenum; thus, its amount is likely to be larger than other elements. The radioactivity of 99mTc finally de- creased to lower than the detection limit, which shows no 99Mo extracted in MEK phase and high separation effi- ciency of 99mTc and 99Tc. The amount of 99Tc was evaluated from that of 99Mo at the end of irradiation to be 4.6 nmol, if 99Mo and 99mTc is totally decayed. In conclusion, 99Tc can be separated from Mo as a target material and anti- mony, cesium, and tungsten as an impurity by using sol- vent extraction with MEK and the irradiation of as much as 30 g MoO3 would yield an enough amount for an optical analysis.

この論文で使われている画像

参考文献

CO5-1

[1] S. Luksic et al., J. Nucl. Mat., 466 (2015) 526-538.

[2] P. Martini et al., App. Rad. Iso., 139 (2018) 325-331

CO5-3

[1] N. Hirano et al., Science, 313 (2006), 1426-1428.

[2] N. Hirano et al., Basin Res., 20 (2008), 543-553.

[3] N. Hirano et al., Geochem. J., 47 (2013), 249-257.

[4] R. Taneja et al., Gondwana Res., 28 (2014), 391-406.

[5] S. Pilet et al., Nature Geosci., 9 (2016), 898-903.

[6] T. Tonegawa et al., Earth Planets Space, 70 (2018), 106.

[7] S. Sakai et al., Geol. Mag., 158 (2021), 72-83.

[8] N. Hirano et al., Deep-Sea Res. I, 154 (2019), 103142.

[9] N. Hirano et al., Island Arc, 30 (2021), e12386.

CO5-4

[1] Tachibana et al. 52nd Lunar and Planetary Science Conference, abstract #1289 (2021).

[2] Yada et al. 52nd Lunar and Planetary Science Con- ference, abstract #2008 (2021).

[3] Tachibana et al. American Geophysical Union, Fall Meeting 2018, abstract #P33C-3846 (2018).

CO5-5

[1] Nozaki et al., Sci. Rep., 11, 8809 (2021).

CO5-7

[1] Y. Ganzawa et al., Jour. Geol. Soc. Japan, 119 (2013 714-726.

[2] K. Oohashi et al., JGR Solid Earth (2020) https://doi.org/10.1029/2020JB019900

CO5-8

[1] Consumer Affairs Agency, Survey of consumer awareness regarding reputational damage (14th), https://www.caa.go.jp/notice/entry/023300/ [in Japanese].

[2] M. Yanaga et al., NMCC ANNUAL REPORT, 22 (2015)185-190.

[3] M. Yanaga et al., NMCC ANNUAL REPORT, 23 (2016)172-179.

[4] M. Yanaga et al., KURNS Progress Report 2018 (2019)CO5-10.

[5] M. Yanaga et al., KURNS Progress Report 2019 (2020)CO5-9.

CO5-9

[1] K. Hirose, et al., Atmospheric Environment, 38 (38), pp. 6601-6608 (2004).

[2] K. Nakamachi, et al., Bunseki Kagaku, 64 (8) pp. 589-594 (2015).

[3] N. Hagura, et al., Bunseki Kagaku, 66 (3), pp. 201-204 (2017).

[4] Y. Okada, et al., 6th Fukushima University IER Annu- al Symposium, P-129 (2020).

[5] E. Suetomi, et al., 6th Fukushima University IER An- nual Symposium, P-130 (2020).

[6] N. Hagura, et al., Transactions of the Atomic Energy Society of Japan, 17 (3-4), pp. 111-117 (2018).

CO5-10

[1] MA Kndrick et al., Geochim. Cosmochim. Acta 235 (2018) 285-304.

[2] L. Hughes et al., Geochim. Cosmochim. Acta 243 (2018) 1-23.

[3] DE Harlov et al., The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes Springer Geochemistry, Gewerbestrasse, Switzerland (2018)

[4] S. Sekimoto et al., Anal. Chem. 85 (2013) 6336-6341.

[5] S. Sekimoto et al., Geostand. Geoanal. Res. 41 (2017) 213-219.

[6] S. Aizawa, J. Radioanal. Nucl. Chem. 278 (2008) 349-352.

[7] M. Inoue et al., Geostand. Geoanal. Res. 28 (2004) 411-416.

[8] T. Okai et al., Chikyuukagaku 38 (2004) 281-286.

[9] B. Deruelle et al., Earth Planet. Sci. Lett. 108 (1992) 217−227.

CO5-11

[1] T. D. Swindle et al., in Advances in 40Ar/39Ar Dating: from Archaeology to Planetary Sciences, edited by Jourdan, Mark, Verati (Geol. Soc., London, Spec. Pub. 378, 2014) 333-347.

[2] S. P. Kelley, in Microprobe techniques in the earth sciences, edited by Potts, Bowles, Reed, Cave (Chapman & Hall, London, 1995) 327-358.

[3] H. Hyodo., Gondwana Res. 14 (2008) 609-616.

[4] J. Park et al., Meteorit. and Planet. Sci., 50 (2015) 2087-2098.

[5] F. Jourdan et al., Geology, 45 (2017) 819-822.

[6] K. Terada et al., Sci. Rep., 8 (2018) #11806.

CO5-12

[1] J. I. Goldstein et al., Chem. Erde., 69 (2009) 293-325.

[2] J. T. Wasson et al., Geochim. Cosmochim. Acta 62 (1998) 715-724.

[3] N. Shirai et al., J. Radioanal. Nucl. Chem., 303 (2015) 1375-1380.

[4] J. T. Wasson, Geochim. Cosmochim. Acta 63 (1999) 2875-2889.

[5] J. T. Wasson and J. W. Richardson, Geochim. Cos- mochim. Acta 65 (2001) 951-970.

[6] J. T. Wasson and G. W. Kallemeyn, Geochim. Cos- mochim. Acta 66 (2002) 2445-2473.

CO5-13

1) M.Mori,K.Tsunoda, et al., Sci. Total Envron., 575,1247-1254 (2017).

2) K.Suzuki, S.Watanabeet, al., Sci. Total Envron., 622,1153-1164 (2018).

CO5-14

[1] K. Saito et al., J. Env. Rad., 139 (2015) 308 - 309.

[2] T. Kubota et al., KURNS Progress Report (2018) 209.

[3] K. Fujiwara et al., Jpn. J. Health Phys., 50 (2015) 189- 193.

[4] K. Iwata et al., Proc. 18th Workshop on Environmen-tal Radioactivity, (2017) 163-166.

CO5-16

[1] I. Pascucci and S. Tachibana, in Protoplanetary Dust, edited by D. Apai and D. S. Lauretta (Cambridge University Press, 2010).

[2] K. Bajo, Ph.D. Thesis, Univ. Tokyo (2010).

[3] J. D. Gilmour and M. J. Filtness, Nature Astronomy, 3 (2019), 326-331.

[4] Ebisawa et al., J. Mass Spectrom. Soc. Jpn., 52 (2004) 219-229.

[5] J. D. Gilmour et al., Meteorit. Planet. Sci., 41 (2006), 19-31.

[6] Connelly J.N. et al., Science, 338 (2012) 651-655.

CO5-17

[1] R. T. Dodd et al. Geochim. Cosmochim. Acta 39 (1975) 1585-1594.

[2] J. M. Friedrich et al. Geochim. Cosmochim. Acta 139 (2014) 83-97.

[3] T. Yoshioka. 修士論文 (首都大学東京) (2016) .

CO5-18

[1] H. Hyodo, K.Sato, H.Kumagai and K. Takamiya, KURNS Progress Report 2019 CO5-7.

[2] S.A.Bowring and I.S. Williams, Contributions to Mineralogy and Petrology, 134 (1999) 3–16.

[3] Y. Sano, et al. Geochimica Cosmochimica Acta 63 (1999) 899–905.

[4] J.C. Roddick, Geochim. Cosmochim. Acta 47 (1983) 887-898.

[5] H. Hyodo, Gondwana Research 14 (2008) 609-616.

参考文献をもっと見る