リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「First Principal Calculation and Angle-resolved Photoemission Spectroscopy Study of Ultrathin Cr₂O₃ and CrTe₂ Films」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

First Principal Calculation and Angle-resolved Photoemission Spectroscopy Study of Ultrathin Cr₂O₃ and CrTe₂ Films

Hou Xueyao 広島大学

2022.09.20

概要

The multiferroic materials have attract wide attention due to its controllable ferroic properties by additional parameters of non- conjugate external fields. Thereinto, Cr2 O 3 would be a great research target for its i ntrinsic multiferroic characteristic. In this work, we use first- principles density functional theory (DFT) calculations and angle-resolved photoemission spectroscopy (ARPES) to study the band structure of Cr2 O3 /Gr/Ni(111 ) heterostructure. Our calculations have shown that the electronic band structures are distinct between the O - and Cr- terminated interfaces of the Cr2 O3 /Gr/Ni(111 ) heterostructure. An interesting spin -polarized mid-gap states are predicted to exist in the O- terminated model, whose spin direction can be flipped by reversing the substrate magnetization direction. In the ARPES experiments, we have observed the existence of such mid -gap band at the energy of ~ -0 .20 e V in interface of Cr2 O3 and graphene. The mid-gap band was further confirmed to have a Cr nature by resonance photoemission spectroscopy. Our findings indicate that one can control the spin-polarized mid-gap states in the antiferromagnetic Cr 2 O 3 as well as the bandgap of graphene by interface engineering, paving the way for spintronic applications.
The calculation for CrTe 2 slabs is performed to examine the electronic structures and corresponding physical properties that can be compared with experiments . The effect of thickness, magnetic configuration and graphene buffer layer are all considered during calculation. We find that the thickness is crucial for its properties, the CrTe 2 slabs recovers to its bulk properties as thickness increases. Besides, the 1 unit cell( UC) and 2UC slabs show a stronger spin-oscillation than that of others. With the AFM magnetic configuration, there will be an unusual unoccupied state at 3. 5 eV above the EF , which is distributed by the in-plane states of Cr 3d and Te 5 p orbitals. The graphene buffer layer will weaken the spin- oscillation of 1UC and 2UC films, and make it recovers to bulk properties.

この論文で使われている画像

参考文献

[1] N.A. Spaldin, M. Fiebig, The Renaissance of Magnetoelectric Multiferroics, Science, 309 (2005).

[2] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys Rev Lett, 61 (1988) 2472-2475.

[3] P. Curie, Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique, Journal de Physique Théorique et Appliquée, 3 (1894) 393-415.

[4] G.T. Rado, V.J. Folen, Observation of the Magnetically Induced Magnetoelectric Effect and Evidence for Antiferromagnetic Domains, Physical Review Letters, 7 (1961) 310-311.

[5] P.R. Wallace, The Band Theory of Graphite, Physical Review, 71 (1947) 622-634.

[6] Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438 (2005) 201-204.

[7] P. Blake, E.W. Hill, A.H. Castro Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Making graphene visible, Applied Physics Letters, 91 (2007).

[8] hanggu Lee, Xiaoding Wei, Jeffrey W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321 (2008).

[9] lexander A. Balandin, Suchismita Ghosh, W. Bao,, Irene Calizo, D. Teweldebrhan,, Feng Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett, 8 (2008) 902-907.

[10] A. Varykhalov, J. Sanchez-Barriga, A.M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, O. Rader, Electronic and magnetic properties of quasifreestanding graphene on Ni, Phys Rev Lett, 101 (2008) 157601.

[11] G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of graphene and its disorders: a review, Sci Technol Adv Mater, 19 (2018) 613-648.

[12] X. Yang, X. Zhou, W. Feng, Y. Yao, Tunable magneto-optical effect, anomalous Hall effect, and anomalous Nernst effect in the two-dimensional room-temperature ferromagnet 1T−CrTe2, Physical Review B, 103 (2021).

[13] I. Zanella, S. Guerini, S.B. Fagan, J. Mendes Filho, A.G. Souza Filho, Chemical doping-induced gap opening and spin polarization in graphene, Physical Review B, 77 (2008).

[14] Y.-J. Kang, J. Kang, K.J. Chang, Electronic structure of graphene and doping effect onSiO2, Physical Review B, 78 (2008) 115404.

[15] B. Zhou, S. Ji, Z. Tian, W. Cheng, X. Wang, W. Mi, Proximity effect induced spin filtering and gap opening in graphene by half-metallic monolayer Cr2C ferromagnet, Carbon, 132 (2018) 25-31.

[16] S. Qi, J. Jiang, X. Wang, W. Mi, Valley polarization, magnetic anisotropy and Dzyaloshinskii-Moriya interaction of two-dimensional graphene/Janus 2H-VSeX (X = S, Te) heterostructures, Carbon, 174 (2021) 540-555.

[17] N. Feng, W. Mi, X. Wang, H. Bai, First-principles study on the interfacial magnetic and electronic properties of Fe4N(0 0 1)/Si and Fe4N(1 1 1)/graphene bilayers, Computational Materials Science, 96 (2015) 256-262.

[18] W. Mi;, H. Yang;, Y. Cheng;, G. Chen;, H. Bai, Magnetic and electronic properties of Fe3O4/graphene heterostructures: First principles perspective, J. Appl. Phys., 113 (2013) 083711.

[19] S.Y. Zhou, 2 G.-H. Gweon,1, * A.V. Fedorov,3 P.N. First,4 W.A. de Heer,4 D.-H. Lee,1 F. Guinea,5 A.H. Castro Neto,6 and A. Lanzara1, 2, Substrate-induced band gap opening in epitaxial graphene.

[20] V.M. Karpan, P.A. Khomyakov, G. Giovannetti, A.A. Starikov, P.J. Kelly, Ni(111)|graphene|h-BN junctions as ideal spin injectors, Physical Review B, 84 (2011).

[21] I. Hamada, M. Otani, Comparative van der Waals density-functional study of graphene on metal surfaces, Physical Review B, 82 (2010) 153412.

[22] G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, P.J. Kelly, Doping graphene with metal contacts, Phys Rev Lett, 101 (2008) 026803.

[23] P.A. Khomyakov, G. Giovannetti, P.C. Rusu, G. Brocks, J. van den Brink, P.J. Kelly, First-principles study of the interaction and charge transfer between graphene and metals, Physical Review B, 79 (2009) 195425.

[24] R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekaer, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat Mater, 9 (2010) 315-319.

[25] J. Lahiri, T. S Miller, A. J Ross, L. Adamska, I.I. Oleynik, M. Batzill, Graphene growth and stability at nickel surfaces, New Journal of Physics, 13 (2011) 025001, 025001-025019.

[26] A. Grüneis, D.V. Vyalikh, Tunable hybridization between electronic states of graphene and a metal surface, Physical Review B, 77 (2008) 193401, 193401-193404.

[27] N. Mishra, J. Boeckl, N. Motta, F. Iacopi, Graphene growth on silicon carbide: A review, physica status solidi (a), 213 (2016) 2277-2289.

[28] C. Xia, S. Watcharinyanon, A.A. Zakharov, R. Yakimova, L. Hultman, L.I. Johansson, C. Virojanadara, Si intercalation/deintercalation of graphene on 6H-SiC(0001), Physical Review B, 85 (2012).

[29] Y. Kota, H. Imamura, M. Sasaki, Effect of lattice deformation on exchange coupling constants in Cr2O3, Journal of Applied Physics, 115 (2014).

[30] D.Ž. Alikhanov R A, Kowalska A, S. KRASNIC, Neutron investigation of the Spin System Dynamics in α-Cr2O3, physica status solidi (b), 32 (1969) 41-48.

[31] I.E. Dzyaloshinskii, On the magneto-electrical effects in antiferromagnets, Soviet Physics JETP 10, 628-629 (1960) 708-709.

[32] Y. Guo, S.J. Clark, J. Robertson, Electronic and magnetic properties of Ti2O3, Cr2O3, and Fe2O3 calculated by the screened exchange hybrid density functional, Journal of Physics: Condensed Matter, 24 (2012) 325504, 325501-325508.

[33] T.S.a.T. Olsen, Magnons in antiferromagnetic bcc-Cr and Cr2O3 from time-dependent density functional theory, arXiv preprint, (2022) 2203.04796, 02022.

[34] J.Y. Chen, X.X. Li, W.Z. Zhou, J.L. Yang, F.P. Ouyang, X. Xiong, Large-Spin-Gap Nodal-Line Half -Metal and High- Temperature Ferromagnetic Semiconductor in Cr2X3(X=O,S,Se) Monolayers, Advanced Electronic Materials, (2019).

[35] N. Wu, X. He, A.L. Wysocki, U. Lanke, T. Komesu, K.D. Belashchenko, C. Binek, P.A. Dowben, Imaging and control of surface magnetization domains in a magnetoelectric antiferromagnet, Physics Review Letter, 106 (2011) 087202.

[36] X. He, Y. Wang, N. Wu, A.N. Caruso, E. Vescovo, K.D. Belashchenko, P.A. Dowben, C. Binek, Robust isothermal electric control of exchange bias at room temperature, Nature Materials, 9 (2010) 579- 585.

[37] Y. Cheng, S. Yu, M. Zhu, J. Hwang, F. Yang, Evidence of the Topological Hall Effect in Pt/Antiferromagnetic Insulator Bilayers, Phys Rev Lett, 123 (2019) 237206.

[38] H. Takenaka, S. Sandhoefner, A.A. Kovalev, E.Y. Tsymbal, Magnetoelectric control of topological phases in graphene, Physical Review B, 100 (2019) 125156.

[39] A. Lodesani, A. Picone, A. Brambilla, D. Giannotti, M.S. Jagadeesh, A. Calloni, G. Bussetti, G. Berti, M. Zani, M. Finazzi, L. Duo, F. Ciccacci, Graphene as an ideal buffer layer for the growth of high-quality ultrathin Cr2O3 layers on Ni(111), ACS Nano, 13 (2019) 4361-4367.

[40] M. Asa, G. Vinai, J.L. Hart, C. Autieri, C. Rinaldi, P. Torelli, G. Panaccione, M.L. Taheri, S. Picozzi, M. Cantoni, Interdiffusion-driven synthesis of tetragonal chromium (III) oxide on BaTiO3, Physical Review Materials, 2 (2018) 033401, 033401-033410.

[41] T.C. Kaspar, D.K. Schreiber, S.R. Spurgeon, M.E. McBriarty, G.M. Carroll, D.R. Gamelin, S.A. Chambers, Built-In Potential in Fe2O3-Cr2O3 Superlattices for Improved Photoexcited Carrier Separation, Adv Mater, 28 (2016) 1616-1622.

[42] A. Kramer, L. Bignardi, P. Lacovig, S. Lizzit, M. Batzill, Comparison of surface structures of corundum Cr2O3(0 0 0 1) and V2O3(0 0 0 1) ultrathin films by x-ray photoelectron diffraction, Journal of Physics: Condensed Matter, 30 (2018).

[43] D.C. Freitas, R. Weht, A. Sulpice, G. Remenyi, P. Strobel, F. Gay, J. Marcus, M. Nunez-Regueiro, Ferromagnetism in layered metastable 1T-CrTe2, J Phys Condens Matter, 27 (2015) 176002.

[44] J.J. Xian, C. Wang, J.H. Nie, R. Li, M. Han, J. Lin, W.H. Zhang, Z.Y. Liu, Z.M. Zhang, M.P. Miao, Y. Yi, S. Wu, X. Chen, J. Han, Z. Xia, W. Ji, Y.S. Fu, Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2, Nat Commun, 13 (2022) 257.

[45] L.X. Gao P, Yang J. , Thickness Dependent Magnetic Transition in Few Layer 1T Phase CrTe2, Journal of Physical Chemistry Letters, 12 (2021) 6847-6851.

[46] X. Zhang, Q. Lu, W. Liu, W. Niu, J. Sun, J. Cook, M. Vaninger, P.F. Miceli, D.J. Singh, S.W. Lian, T.R. Chang, X. He, J. Du, L. He, R. Zhang, G. Bian, Y. Xu, Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films, Nat Commun, 12 (2021) 2492.

[47] X. Zhang, S.C. Ambhire, Q. Lu, W. Niu, J. Cook, J.S. Jiang, D. Hong, L. Alahmed, L. He, R. Zhang, Y. Xu, S.S. Zhang, P. Li, G. Bian, Giant Topological Hall Effect in van der Waals Heterostructures of CrTe2/Bi2Te3, ACS Nano, 15 (2021) 15710-15719.

[48] M. Opel, Spintronic oxides grown by laser-MBE, Journal of Physics D: Applied Physics, 45 (2012).

[49] M.A.H.T.a.H. Sitter, MBE growth physics. application to device technology, Microelectronics Journal, 27 (1997) 257-296.

[50] D. Mogk, Auger Electron Spectroscopy, in.

[51] C. Davisson, L.H. Germer, Diffraction of Electrons by a Crystal of Nickel, Physical Review, 30 (1927) 705-740.

[52] M. Gulde, Development of an Ultrafast Low-Energy Electron Diffraction Setup, in, the University of Göttingen.

[53] C.B.a.M. Chergui, ultrafast x-ray absorption spectroscopy, Chem. Rev., 104 (2004) 1781−1812.

[54] V.D. J. Franck and G. Hertz, Photoelectronic effect Hertz, Phys. Ges., (1914) 457.

[55] A. Einstein, quantum Photoelectronic effect, Ann. Physik, 17 (1905) 132.

[56] Wikipedia, Photoelectric effect, in, pp. https://en.wikipedia.org/wiki/Photoelectric_effect.

[57] S. Hufner, Photoelectron Spectroscopy: Principles and Applications, Springer, 2003.

[58] I.L.a.W.E. SPICER, The probing depth in photoemission and Auger-electron spectroscopy, Journal of Electron Spectroscopy and Related Phenomena, 3 (1974) 409-413.

[59] A. Damascelli, Probing the Electronic Structure of Complex Systems by ARPES, Physica Scripta T109 (2004) 61–74.

[60] B. Lv, T. Qian, H. Ding, Angle-resolved photoemission spectroscopy and its application to topological materials, Nature Reviews Physics, 1 (2019) 609-626.

[61] H.Z. Damascelli A, Shen Z X. , Angle-resolved photoemission studies of the cuprate superconductor- 2003, REVIEWS OF MODERN PHYSICS, 75 (2003) 473.

[62] I. Adawi, Theory of the Surface Photoelectric Effect for One and Two Photons, Physical Review, 134 (1964) A788-A798.

[63] L. Hedin, S. Lundqvist, Effects of Electron-Electron and Electron-Phonon Interactions on the One- Electron States of Solids, in, 1970, pp. 1-181.

[64] A. Damascelli, Z. Hussain, Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, REVIEWS OF MODERN PHYSICS, 75.

[65] H. Iwasawa, K. Shimada, E.F. Schwier, M. Zheng, Y. Kojima, H. Hayashi, J. Jiang, M. Higashiguchi, Y. Aiura, H. Namatame, M. Taniguchi, Rotatable high-resolution ARPES system for tunable linear- polarization geometry, J Synchrotron Radiat, 24 (2017) 836-841.

[66] Kenya Shimada, Masashi Arita, Yukiharu Takeda, Hiroyuki Fujino, Kenichi Kobayashi, Takamasa Narimura, Hirofumi Namatame, M. Taniguchi, High-resolution, Low-temperature Photoemission Spectroscopy At The Hisor Linear Undulator Beamline, Surface Review and Letters, 9 529–534.

[67] D.S. SHOLL;, J.A. STECKEL, DENSITY FUNCTIONAL THEORY: A practical approach.

[68] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Physical Review, 136 (1964) B864-B871.

[69] M.M. Georg Kresse, and J¨urgen Furthmuller, VASP the GUIDE.

[70] C.J. Cramer, Essentials of Computational Chemistry Theories and Models, Wiley, 2004.

[71] V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Computer Physics Communications, 267 (2021).

[72] G.K.J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane- wave basis set, Physical Review B, 54 (1996) 11169, 11169-11186.

[73] J.F.b. G. Kresse, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Sciencex, 6 (1996) 15-50.

[74] B.K. Perdew John P., Wang Yue, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Physical Review B 54 (1996) 16533, 16533-16539.

[75] W.B. Zhang, N. Yu, W.Y. Yu, B.Y. Tang, Stability and magnetism of vacancy in NiO: A GGA+U study, The European Physical Journal B, 64 (2008) 153-158.

[76] X. Hou, M. Wumiti, S. Kumar, K. Shimada, M. Sawada, Observation of mid-gap states emerging in the O-terminated interface of Cr2O3/graphene: A combined study of ab initio prediction and photoemission analysis, Applied Surface Science, 594 (2022).

[77] A. Rohrbach, J. Hafner, G. Kresse, Ab initiostudy of the (0001) surfaces of hematite and chromia: Influence of strong electronic correlations, Physical Review B, 70 (2004) 125426,125421-125417.

[78] H.J. Monkhorst, J.D. Pack, Special points for Brillonin-zone integrations, Physical Review B, 13 (1976) 5188-5192.

[79] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computentional Chemistry, 27 (2006) 1787-1799.

[80] M. Fuentes-Cabrera, M.I. Baskes, A.V. Melechko, M.L. Simpson, Bridge structure for the graphene/Ni(111) system: A first principles study, Physical Review B, 77 (2008) 035405,035401-035405.

[81] W.B. Zhang, C. Chen, P.Y. Tang, First-principles study for stability and binding mechanism of graphene/Ni(111) interface: Role of vdW interaction, Journal of Chemical Physics, 141 (2014) 044708, 044701-044708.

[82] F. Mittendorfer, A. Garhofer, J. Redinger, J. Klimeš, J. Harl, G. Kresse, Graphene on Ni(111): Strong interaction and weak adsorption, Physical Review B, 84 (2011) 201401, 201401-201404.

[83] G. Bertoni, L. Calmels, A. Altibelli, V. Serin, First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface, Physical Review B, 71 (2005) 075402, 075401-075408.

[84] A. Varykhalov, D. Marchenko, J. Sánchez-Barriga, M.R. Scholz, B. Verberck, B. Trauzettel, T.O. Wehling, C. Carbone, O. Rader, Intact Dirac Cones at Broken Sublattice Symmetry: Photoemission Study of Graphene on Ni and Co, Physical Review X, 2 (2012) 041017, 041011-041010.

[85] A. Calloni, G. Berti, A. Brambilla, M. Riva, A. Picone, G. Bussetti, M. Finazzi, F. Ciccacci, L. Duo, Electron spectroscopy investigation of the oxidation of ultra-thin films of Ni and Cr on Fe(001), Journal of Physics: Condensed Matter, 26 (2014) 445001, 445001-445011.

[86] L. Bignardi, P. Lacovig, M.M. Dalmiglio, F. Orlando, A. Ghafari, L. Petaccia, A. Baraldi, R. Larciprete, S. Lizzit, Key role of rotated domains in oxygen intercalation at graphene on Ni(1 1 1), 2D Materials, 4 (2017).

[87] Z. Zhang, Q. Qian, B. Li, K.J. Chen, Interface engineering of monolayer MoS2/GaN hybrid heterostructure: Modified band alignment for photocatalytic water splitting application by nitridation treatment, ACS Applied: Materials & Interfaces, 10 (2018) 17419-17426.

[88] Q. Peng, Z. Wang, B. Sa, B. Wu, Z. Sun, Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures, Scientific Reports, 6 (2016) 31994, 31991-31910.

[89] A. Grüneis, K. Kummer, D.V. Vyalikh, Dynamics of graphene growth on a metal surface: a time- dependent photoemission study, New Journal of Physics, 11 (2009) 073050, 073051-073059.

[90] F.P. Fehlner, N.F. Mott, Low-Temperature Oxidation, Oxidation of Metals, 2, 1, 59-99 (1970).

[91] S. Cao, N. Wu, W. Echtenkamp, V. Lauter, H. Ambaye, T. Komesu, C. Binek, P.A. Dowben, The surface stability of Cr2O3(0001), Journal of Physics: Condensed Matter, 27 (2015) 255003, 255001-255006.

[92] C.A. Ventrice, Jr., D. Ehrlich, E.L. Garfunkel, B. Dillmann, D. Heskett, H. Freund, Metallic-to- nonmetallic transition of Na coadsorbed with CO2 and H2O on the Cr2O3(111)/Cr(110) surface, Physical Review B, 46 (1992) 12892-12895.

[93] V. Maurice, S. Cadot, P. Marcus, XPS, LEED and STM study of thin oxide films formed on Cr(110), Surface Science 458 (2000 ) 195–215.

[94] X. Li, L. Liu, V.E. Henrich, Resonant photoemission determination of the valence electronic structure of Cr2O3, Solid State Communications, 84 (1992) 1103-1106.

[95] N.K. Sugawara H, Miya T, et al., Extreme ultraviolet photoemission from chromium metal, Journal of the Physical Society of Japan, 53(1): 279-283 (1984).

[96] C. Oshima, A. Itoha, E. Rokuta, T. Tanaka, K. Yamashita, T. Sakurai, A hetero-epitaxial-double- atomic-layer system of monolayer graphene/monolayer h-BN on Ni(111), Solid State Communications 116 (2000) 37-40.

[97] D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V.K. Adamchuk, A.B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, D.V. Vyalikh, Nitrogen-doped graphene: efficient growth, structure, and electronic properties, Nano Lett, 11 (2011) 5401-5407.

[98] Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, C. Oshima, Atomic structure of monolayer graphite formed on Ni(111), Surface Science 374 (1997) 61-64.

[99] X. Sun, W. Li, X. Wang, Q. Sui, T. Zhang, Z. Wang, L. Liu, D. Li, S. Feng, S. Zhong, H. Wang, V. Bouchiat, M. Nunez Regueiro, N. Rougemaille, J. Coraux, A. Purbawati, A. Hadj-Azzem, Z. Wang, B. Dong, X. Wu, T. Yang, G. Yu, B. Wang, Z. Han, X. Han, Z. Zhang, Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2, Nano Research, 13 (2020) 3358-3363.

[100] X. Sui, T. Hu, J. Wang, B.-L. Gu, W. Duan, M.-s. Miao, Voltage-controllable colossal magnetocrystalline anisotropy in single-layer transition metal dichalcogenides, Physical Review B, 96 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る