リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quantification of intramyocardial hemorrhage volume using magnetic resonance imaging with three-dimensional T1-weighted sequence in patients with ischemia-reperfusion injury : a semi-automated image processing technique」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quantification of intramyocardial hemorrhage volume using magnetic resonance imaging with three-dimensional T1-weighted sequence in patients with ischemia-reperfusion injury : a semi-automated image processing technique

Arai, Hideo アライ, ヒデオ Kawakubo, Masateru 河窪, 正照 カワクボ, マサテル Abe, Kou アベ, コウ Hatashima, Hikaru ハタシマ, ヒカル Sanui, Kenichi サヌイ, ケンイチ Nishimura, Hiroshi ニシムラ, ヒロシ Kadokami, Toshiaki カドカミ, トシアキ 九州大学

2020.01

概要

[Purpose]
Although intramyocardial hemorrhage (IMH) is a poor prognostic factor caused by ischemia reperfusion injury, little evidence is available regarding the association between IMH volume and biom

参考文献

1.

Puymirat E, Simon T, Cayla G, et al (2017) Acute myocardial infarction: Changes in patient

characteristics, management, and 6-month outcomes over a period of 20 years in the FAST-MI

program (French registry of acute ST-elevation or non-ST-elevation myocardial infarction) 1995

to 2015. Circulation 136:1908–1919. https://doi.org/10.1161/CIRCULATIONAHA.117.030798

2.

Niccoli G, Burzotta F, Galiuto L, Crea F (2009) Myocardial No-Reflow in Humans. J Am Coll

Cardiol 54:281–292. https://doi.org/10.1016/j.jacc.2009.03.054

3.

Turer AT, Hill JA (2010) Pathogenesis of Myocardial Ischemia-Reperfusion Injury and Rationale

for Therapy. Am J Cardiol 106:360–368.

https://doi.org/10.1016/j.amjcard.2010.03.032.Pathogenesis

4.

Heusch G (2015) Treatment of Myocardial Ischemia/Reperfusion Injury by Ischemic and

Pharmacological Postconditioning. In: Comprehensive Physiology. John Wiley & Sons, Inc.,

Hoboken, NJ, USA, pp 1123–1145

5.

Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected

therapeutic target. J Clin Invest 123:92–100. https://doi.org/10.1172/JCI62874

6.

Ganame J, Messalli G, Dymarkowski S, et al (2009) Impact of myocardial haemorrhage on left

ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur

18

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Heart J 30:1440–1449. https://doi.org/10.1093/eurheartj/ehp093

7.

Hamirani YS, Wong A, Kramer CM, Salerno M (2014) Effect of microvascular obstruction and

intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial

infarction: a systematic review and meta-analysis. JACC Cardiovasc Imaging 7:940–952.

https://doi.org/10.1016/j.jcmg.2014.06.012

8.

Calvieri C, Masselli G, Monti R, et al (2015) Intramyocardial hemorrhage: An enigma for cardiac

MRI? Biomed Res Int 2015:. https://doi.org/10.1155/2015/859073

9.

Penttilä I, Penttilä K, Rantanen T (2000) Laboratory diagnosis of patients with acute chest pain.

Clin. Chem. Lab. Med. 38:187–197

10.

Kali A, Tang RL, Kumar A, et al (2013) Detection of acute reperfusion myocardial hemorrhage

with cardiac MR imaging: T2 versus T2. Radiology 269:387–395.

https://doi.org/10.1148/radiol.13122397

11.

Mather AN, Fairbairn TA, Ball SG, et al (2011) Reperfusion haemorrhage as determined by

cardiovascular MRI is a predictor of adverse left ventricular remodelling and markers of late

arrhythmic risk. Heart 97:453–459. https://doi.org/10.1136/hrt.2010.202028

12.

Pedersen SF, Thrysøe SA, Robich MP, et al (2012) Assessment of intramyocardial hemorrhage

by T1-weighted cardiovascular magnetic resonance in reperfused acute myocardial infarction. J

Cardiovasc Magn Reson 14:1–8. https://doi.org/10.1186/1532-429X-14-59

19

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

13.

Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO JR (2000)

The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial

dysfunction. N Engl J Med 343:1445–1453

14.

Ganesan AN, Gunton J, Nucifora G, et al (2018) Impact of Late Gadolinium Enhancement on

mortality, sudden death and major adverse cardiovascular events in ischemic and nonischemic

cardiomyopathy: A systematic review and meta-analysis. Int J Cardiol 254:230–237.

https://doi.org/10.1016/j.ijcard.2017.10.094

15.

Vermes E, Childs H, Carbone I, et al (2013) Auto-threshold quantification of late gadolinium

enhancement in patients with acute heart disease. J Magn Reson Imaging 37:382–390.

https://doi.org/10.1002/jmri.23814

16.

Baron N, Kachenoura N, Cluzel P, et al (2013) Comparison of various methods for quantitative

evaluation of myocardial infarct volume from magnetic resonance delayed enhancement data. Int

J Cardiol 167:739–744. https://doi.org/10.1016/j.ijcard.2012.03.056

17.

McAlindon E, Pufulete M, Lawton C, et al (2015) Quantification of infarct size and myocardium

at risk: evaluation of different techniques and its implications. Eur Hear J Cardiovasc Imaging

16:738–746. https://doi.org/10.1093/ehjci/jev001

18.

Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man

Cybern 9:62–66. https://doi.org/10.1109/TSMC.1979.4310076

20

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

19.

Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical

statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

20.

Miyachi H, Takagi A, Miyauchi K, et al (2016) Current characteristics and management of ST

elevation and non-ST elevation myocardial infarction in the Tokyo metropolitan area: from the

Tokyo CCU network registered cohort. Heart Vessels 31:1740–1751.

https://doi.org/10.1007/s00380-015-0791-9

21.

Kim MK, Chung WY, Cho YS, et al (2011) Serum N-terminal pro-B-type natriuretic peptide

levels at the time of hospital admission predict of microvascular obstructions after primary

percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. J

Interv Cardiol 24:34–41. https://doi.org/10.1111/j.1540-8183.2010.00606.x

22.

Cuenin L, Lamoureux S, Schaaf M, et al (2017) Incidence and Significance of Spontaneous ST

Segment Re-elevation After Reperfused Anterior Acute Myocardial Infarction ― Relationship

With Infarct Size, Adverse Remodeling, and Events at 1 Year―. Circ J 82:1379–1386.

https://doi.org/10.1253/circj.cj-17-0671

23.

Nagao M, Higashino H, Matsuoka H, et al (2008) Clinical importance of microvascular

obstruction on contrast-enhanced MRI in reperfused acute myocardial infarction. Circ J 72:200–

204. https://doi.org/10.1253/circj.72.200

24.

SC B, SK Y, R V, J W (2010) Microvascular Obstruction. J Am Coll Cardiol 55:1649–60.

21

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://doi.org/10.1093/med/9780199829477.003.0052

25.

Bulluck H, Rosmini S, Abdel-Gadir A, et al (2016) Residual Myocardial Iron Following

Intramyocardial Hemorrhage during the Convalescent Phase of Reperfused ST-Segment-

Elevation Myocardial Infarction and Adverse Left Ventricular Remodeling. Circ Cardiovasc

Imaging 9:. https://doi.org/10.1161/CIRCIMAGING.116.004940

26.

Min P-K, Chung H, Park CH, et al (2013) Correction with blood T1 is essential when measuring

post-contrast myocardial T1 value in patients with acute myocardial infarction. J Cardiovasc

Magn Reson 15:1. https://doi.org/10.1186/1532-429x-15-11

27.

Van Den Bos EJ, Baks T, Moelker AD, et al (2006) Magnetic resonance imaging of haemorrhage

within reperfused myocardial infarcts: Possible interference with iron oxide-labelled cell

tracking? Eur Heart J 27:1620–1626. https://doi.org/10.1093/eurheartj/ehl059

22

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Legends for Figures and Table

Fig. 1

Flowchart of the study protocol. Description from acquired images to various segmentation methods.

Fig. 2

Receiver operating characteristic (ROC) curve of CK and CK-MB for detecting patient with IMH. Both

of area under the curve (AUC) of the biomarkers show high sensitivity and specificity. The cutoff values

of CK and CK-MB are 2460 IU/L and 231 IU/L, respectively.

Fig. 3

Assessment of IMH volume using different quantification methods in acute myocardial infarction (AMI)

patient with IMH.

Short-axis 3D T1-MRI images in patients with AMI of segment 6. IMH size shows that 1SD is larger than

manual method and Otsu is considerably larger than manual method. Whereas, IMH size of 3SD, 4SD

and FWHM show smaller values than that obtained from manual method. IMH size of calculated by 2SD

is congruent to the values obtained by manual method.

Table 1

Patient Characteristics.

Values are mean ± standard deviation or median (IQR). Characteristics of all 33 patients are shown.

IMH = intramyocardial hemorrhage; STEMI = ST elevation myocardial infarction; CK = creatine kinase;

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

CK-MB = creatine kinase MB; IQR = interquartile range; TIMI = thrombolysis in myocardial infarction;

PCI = percutaneous coronary intervention; EDV = end-diastolic volume; ESV = end-systolic volume; EF

= ejection fraction.

Table 2

Spearman rank-correlation coefficient, Bland-Altman analysis and ICC of different quantification

methods compared to the manual method for IMH measuring.

The myocardial weight is expressed in grams (g), computed slice-by-slice.

IMH = intramyocardial hemorrhage; FWHM = full width at half maximum; LOA = limits of agreement;

SSD = standard deviation of difference; ICC = intraclass correlation coefficients; CI = confidence

interval.

Table 3

Bland-Altman analysis and ICC for intra- and inter-observer variability of different quantification

methods for IMH measurement.

The myocardial weight is expressed in milligrams (mg), computed slice-by-slice.

IMH = intramyocardial hemorrhage; FWHM = full width at half maximum; LOA = limits of agreement;

SSD = standard deviation of difference; ICC = intraclass correlation coefficients; CI = confidence

interval.

Figures

Click here to access/download;Figure;Figures.pdf

Table

Click here to access/download;Table;Table1.docx

Table 1

Patient Characteristics.

All

Without IMH

With IMH

P value

(n = 33)

(n = 29)

(n = 4)

STEMI, n (%)

27 (82)

24 (83)

3 (75)

1.00

Age (years)

67 ± 11

67 ± 11

65 ± 11

0.47

Male, n (%)

27 (82)

23 (79)

4 (100)

1.00

23.6 ± 3.9

23.8 ± 4.1

23.1 ± 2.1

0.44

Systolic blood pressure (mmHg)

143.4 ± 28.2

143.2 ± 28.4

144.3 ± 30.7

0.87

Diastolic blood pressure (mmHg)

82.7 ± 21.7

81.6 ± 22.3

90.5 ± 17.0

0.19

Systemic hypertension, n (%)

25 (76)

21 (72)

4 (100)

0.55

Hyperlipidemia, n (%)

16 (48)

14 (48)

2 (50)

1.00

Diabetes mellitus, n (%)

11 (33)

11 (38)

0 (0)

0.28

Current smoker, n (%)

9 (27)

7 (24)

2 (50)

0.30

2487 ± 3051

1713 ± 1640

8093 ± 5146

<0.01

187 ± 161

152 ± 125

438 ± 185

<0.01

RCA

15 (45)

15 (52)

0 (0)

0.11

LAD

14 (42)

11 (38)

3 (75)

0.29

LCX

4 (12)

3 (10)

1 (25)

0.42

247 (131-1335)

247 (131-1440)

226 (137-564)

0.72

TIMI flow grade 0/1 pre-PCI, n (%)

21 (64)

18 (62)

3 (75)

1.00

TIMI flow grade 3 post PCI, n (%)

31 (94)

27 (93)

4 (100)

1.00

EDV (ml)

84.0 ± 24.1

82.4 ± 23.5

95.9 ± 28.6

0.39

ESV (ml)

38.1 ± 15.3

37.5 ± 14.5

42.1 ± 23.0

0.93

Clinical data

Body mass index (kg/m2)

Biochemical data

Peak CK (IU/L)

Peak CK-MB (IU/L)

Angiographic data

Culprit lesion, n (%)

Median (IQR) minutes from OTB

Echocardiographic data

EF (%)

56.9 ± 10.4

57.0 ± 10.8

56.1 ± 8.3

0.98

Values are mean ± standard deviation or median (IQR). Characteristics of all 33 patients are shown.

IMH = intramyocardial hemorrhage; STEMI = ST elevation myocardial infarction; CK = creatine kinase; CK-MB =

creatine kinase MB; IQR = interquartile range; TIMI = thrombolysis in myocardial infarction; PCI = percutaneous

coronary intervention; EDV = end-diastolic volume; ESV = end-systolic volume; EF = ejection fraction.

Table

Click here to access/download;Table;Table2.docx

Table 2

Spearman rank-correlation coefficient, Bland-Altman analysis and ICC of different quantification methods compared to

the manual method for IMH measuring.

Correlation analysis

Semi-

IMH volume (g)

automated

vs. Manual

method

measurements

Bland-Altman analysis

Bias

P value

ICC

SDD

(LOA)

(95% CI)

(8.07 g

(5.37 to 9.33))

19.96

1SD

0.90

0.63

<0.0001

(14.79 to 26.68)

(-0.62 to 2.42)

5.84

2SD

-0.01

0.85

<0.0001

(3.30 to 9.00)

(-0.51 to 0.49)

-0.21

0.91

<0.0001

(1.19 to 5.07)

(-0.71 to 0.30)

-0.28

0.84

<0.0001

(0.65 to 3.20)

(-0.89 to 0.32)

-0.37

0.54

<0.0001

(0.33 to 0.67)

(-1.17 to 0.44)

7.11

0.30

(109.97 to 136.55)

0.01

(0 – 0.31)

0.01

2.19

(2.82 to 11.40)

(0.02 – 0.71)

0.11

0.41

122.57

Otsu

(0.24 – 0.84)

0.46

0.31

0.46

FWHM

(0.75 – 0.90)

0.67

0.26

1.90

4SD

(0 – 0.56)

0.84

0.26

3.00

3SD

0.28

0.78

(0 – 0.06)

The myocardial weight is expressed in grams (g), computed slice-by-slice.

IMH = intramyocardial hemorrhage; FWHM = full width at half maximum; LOA = limits of agreement; SSD = standard

deviation of difference; ICC = intraclass correlation coefficients; CI = confidence interval.

Table

Click here to access/download;Table;Table3.docx

Table 3

Bland-Altman analysis and ICC for intra- and inter-observer variability of different quantification methods for IMH

measurement.

Intra-observer

Method

Bias

Inter-observer

ICC

Bias

SDD

(LOA)

-11

Manual

91

(-189 to 167)

-113

1SD

299

(-698 to 472)

-22

2SD

48

(-118 to 72)

-4

3SD

(-15 to 7)

-0.8

4SD

(-14 to 12)

-0.5

FWHM

(-4 to 3)

-615

Otsu

880

(-2339 to 1109)

ICC

SDD

(95% CI)

(LOA)

0.97

50

0.95

121

(0.93 – 0.99)

(-187 to 288)

0.92

-204

(-615 to 207)

0.99

-52

(-180 to 76)

1.00

-18

(-81 to 45)

1.00

-10

(-40 to 21)

0.99

-0.9

(-4 to 3)

0.91

-522

(0.99 – 1.00)

0.96

531

(-1563 to 519)

(0.97 – 1.00)

1.00

(0.97 – 1.00)

(0.97 – 1.00)

0.99

15

(1.00 – 1.00)

(0.91 – 0.99)

0.99

32

(1.00 – 1.00)

(0.71 – 0.99)

0.98

65

(0.98 – 1.00)

(0.87 – 0.98)

0.96

210

(0.81 – 0.97)

(0.79 – 0.96)

(95% CI)

(0.70 – 0.99)

The myocardial weight is expressed in milligrams (mg), computed slice-by-slice.

IMH = intramyocardial hemorrhage; FWHM = full width at half maximum; LOA = limits of agreement; SSD = standard

deviation of difference; ICC = intraclass correlation coefficients; CI = confidence interval.

...

参考文献をもっと見る