リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Identification of lysophosphatidic acid in serum as a factor that promotes epithelial apical junctional complex organization」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Identification of lysophosphatidic acid in serum as a factor that promotes epithelial apical junctional complex organization

Sakakibara, Shotaro Sakane, Ayuko Sasaki, Takuya Shinohara, Masakazu Maruo, Tomohiko Miyata, Muneaki Mizutani, Kiyohito Takai, Yoshimi 神戸大学

2022.10

概要

The apical junctional complex (AJC) consists of adherens junctions (AJs) and tight junctions and regulates epithelial integrity and remodeling. However, it is unclear how AJC organization is regulated based on environmental cues. We found here using cultured EpH4 mouse mammary epithelial cells that fetal bovine serum (FBS) in a culture medium showed an activity to promote AJC organization and that FBS showed an activity to promote tight junction formation even in the absence of AJ proteins, such as E-cadherin, αE-catenin, and afadin. Furthermore, we purified the individual factor responsible for these functions from FBS and identified this molecule as lysophosphatidic acid (LPA). In validation experiments, purified LPA elicited the same activity as FBS. In addition, we found that the AJC organization–promoting activity of LPA was mediated through the LPA receptor 1/5 via diacylglycerol–novel PKC and Rho–ROCK pathway activation in a mutually independent, but complementary, manner. We demonstrated that the Rho–ROCK pathway activation–mediated AJC organization was independent of myosin II-induced actomyosin contraction, although this signaling pathway was previously shown to induce myosin II activation. These findings are in contrast to the literature, as previous results suggested an AJC organization–disrupting activity of LPA. The present results indicate that LPA in serum has an AJC organization–promoting activity in a manner dependent on or independent of AJ proteins.

この論文で使われている画像

参考文献

1. Farquflar, M. G., and Palade, G. E. (1963) Junctional complexes in various epitflelia. J. Cell Biol. 17, 375–412

2. Otani, T., and Furuse, M. (2020) Tigflt junction structure and function revisited. Trends Cell Biol. 30, 805–817

3. Cereijido, M., Valdés, J., Sflosflani, L., and Contreras, R. G. (1998) Role of tigflt junctions in establisfling and maintaining cell polarity. Annu. Rev. Physiol. 60, 161–177

4. Harris, T. J., and Tepass, U. (2010) Adflerens junctions: from molecules to morpflogenesis. Nat. Rev. Mol. Cell Biol. 11, 502–514

5. Anderson, J. M., and Van Itallie, C. M. (2009) Pflysiology and function of tfle tigflt junction. Cold Spring Harb. Perspect. Biol. 1, a002584

6. Tsukita, S., Furuse, M., and Itofl, M. (2001) Multifunctional strands in tigflt junctions. Nat. Rev. Mol. Cell Biol. 2, 285–293

7. Gumbiner, B., Stevenson, B., and Grimaldi, A. (1988) Tfle role of tfle cell adflesion molecule uvomorulin in tfle formation and maintenance of tfle epitflelial junctional complex. J. Cell Biol. 107, 1575–1587

8. Takai, Y., Ikeda, W., Ogita, H., and Rikitake, Y. (2008) Tfle immunoglobulin-like cell adflesion molecule nectin and its associated protein afadin. Annu. Rev. Cell Dev. Biol. 24, 309–342

9. Takeicfli, M. (20h4) Dynamic contacts: rearranging adflerens junctions to drive epitflelial remodelling. Nat. Rev. Mol. Cell Biol. 15, 397–4h0

10. Furuse, M., and Takai, Y. (202h) Recent advances in understanding tigflt junctions. Fac. Rev. 10, h8

11. Furuse, M., Sasaki, K., Fujimoto, K., and Tsukita, S. (h998) A single gene product, claudin-h or -2, reconstitutes tigflt junction strands and recruits occludin in fibroblasts. J. Cell Biol. 143, 39h–40h

12. Fiontek, J., Krug, S. M., Frotze, J., Krause, G., and Fromm, M. (2020) Molecular arcflitecture and assembly of tfle tigflt junction backbone. Biochim. Biophys. Acta Biomembranes 1862, h83279

13. Efimova, N., and Svitkina, T. M. (20h8) Brancfled actin networks pusfl against eacfl otfler at adflerens junctions to maintain cell-cell adflesion. J. Cell Biol. 217, h827–h845

14. Marutflamutflu, V., Aratyn-Scflaus, Y., and Gardel, M. L. (20h0) Conserved F-actin dynamics and force transmission at cell adflesions. Curr. Opin. Cell Biol. 22, 583–588

15. Steinbacfler, T., and Ebnet, K. (20h8) Tfle regulation of junctional actin dynamics by cell adflesion receptors. Histochem. Cell Biol. 150, 34h–350

16. Smutny, M., Cox, K. L., Leerberg, J. M., Kovacs, E. M., Conti, M. A., Ferguson, C., et al. (20h0) Myosin II isoforms identify distinct functional modules tflat support integrity of tfle epitflelial zonula adflerens. Nat. Cell Biol. 12, 696–702

17. Bertoccfli, C., Wang, Y., Ravasio, A., and Kara, Y. (20h7) Nanoscale ar- cflitecture of cadflerin-based cell adflesions. Nat. Cell Biol. 19, 28–37

18. Kosflino, T., Sakisaka, T., Baba, T., Yamada, T., Kimura, T., and Takai, Y. (2005) Regulation of E-cadflerin endocytosis by nectin tflrougfl afadin, Raph, and ph20ctn. J. Biol. Chem. 280, 24095–24h03

19. Tacflibana, K., Nakanisfli, K., Mandai, K., Ozaki, K., Ikeda, W., Yama- moto, Y., et al. (2000) Two cell adflesion molecules, nectin and cadflerin, interact tflrougfl tfleir cytoplasmic domain-associated proteins. J. Cell Biol. 150, hh6h–hh76

20. Sato, T., Fujita, N., Yamada, A., Oosflio, T., Okamoto, R., Irie, K., et al. (2006) Regulation of tfle assembly and adflesion activity of E-cadflerin by nectin and afadin for tfle formation of adflerens junctions in Madin- Darby canine kidney cells. J. Biol. Chem. 281, 5288–5299

21. Fukuyama, T., Ogita, K., Kawakatsu, T., Fukuflara, T., Yamada, T., Sato, T., et al. (2005) Involvement of tfle c-Src-Crk-C3G-Raph signaling in tfle nectin-induced activation of Cdc42 and formation of adflerens junctions. J. Biol. Chem. 280, 8h5–825

22. Fukuflara, T., Sflimizu, K., Kawakatsu, T., Fukuyama, T., Minami, Y., Konda, T., et al. (2004) Activation of Cdc42 by trans interactions of tfle cell adflesion molecules nectins tflrougfl c-Src and Cdc42-GEF FRG. J. Cell Biol. 166, 393–405

23. Sakakibara, S., Mizutani, K., Sugiura, A., Sakane, A., Sasaki, T., Yone- mura, S., et al. (2020) Afadin regulates actomyosin organization tflrougfl αE-catenin at adflerens junctions. J. Cell Biol. 219

24. Fukuflara, A., Irie, K., Nakanisfli, K., Takekuni, K., Kawakatsu, T., Ikeda, W., et al. (2002) Involvement of nectin in tfle localization of junctional adflesion molecule at tigflt junctions. Oncogene 21, 7642–7655

25. Oosflio, T., Kobayasfli, R., Ikeda, W., Miyata, M., Fukumoto, Y., Matsu- zawa, N., et al. (20h0) Involvement of tfle interaction of afadin witfl \O-h in tfle formation of tigflt junctions in Madin-Darby canine kidney cells. J. Biol. Chem. 285, 5003–50h2

26. Takeicfli, M. (h988) Tfle cadflerins: cell-cell adflesion molecules con- trolling animal morpflogenesis. Development 102, 639–655

27. Sakakibara, S., Maruo, T., Miyata, M., Mizutani, K., and Takai, Y. (20h8) Requirement of tfle F-actin-binding activity of l-afadin for enflancing tfle formation of adflerens and tigflt junctions. Genes Cells 23, h85–h99

28. Yamada, A., Irie, K., Kirota, T., Oosflio, T., Fukuflara, A., and Takai, Y. (2005) Involvement of tfle annexin II-Sh00Ah0 complex in tfle formation of E-cadflerin-based adflerens junctions in Madin-Darby canine kidney cells. J. Biol. Chem. 280, 60h6–6027

29. Okamoto, R., Irie, K., Yamada, A., Katata, T., Fukuflara, A., and Takai, Y. (2005) Recruitment of E-cadflerin associated witfl α- and β-catenins and ph20ctn to tfle nectin-based cell-cell adflesion sites by tfle action of h2- O-tetradecanoylpflorbol-h3-acetate in MDCK cells. Genes Cells 10, 435–445

30. Umeda, K., Matsui, T., Nakayama, M., Furuse, K., Sasaki, K., Furuse, M., et al. (2004) Establisflment and cflaracterization of cultured epitflelial cells lacking expression of \O-h. J. Biol. Chem. 279, 44785–44794

3h. Suzuki, A., Yamanaka, T., Kirose, T., Manabe, N., Mizuno, K., Sfli- mizu, M., et al. (200h) Atypical protein kinase C is involved in tfle evolutionarily conserved par protein complex and plays a critical role in establisfling epitflelia-specific junctional structures. J. Cell Biol. 152, hh83–hh96

32. Cflen, X., and Macara, I. G. (2005) Far-3 controls tigflt junction assembly tflrougfl tfle Rac excflange factor Tiamh. Nat. Cell Biol. 7, 262–269

33. Capaldo, C. T., and Macara, I. G. (2007) Depletion of E-cadflerin disrupts establisflment but not maintenance of cell junctions in Madin-Darby canine kidney epitflelial cells. Mol. Biol. Cell 18, h89–200

34. Yanagida, K., and Isflii, S. (20hh) Non-edg family LFA receptors: tfle cutting edge of LFA researcfl. J. Biochem. 150, 223–232

35. Valdés-Rives, S. A., and González-Arenas, A. (20h7) Autotaxin-lyso- pflospflatidic acid: from inflammation to cancer development. Med. Inflamm. 2017, 9h73090

36. Benjamin, J. M., Kwiatkowski, A. V., Yang, C., Korobova, F., Fokutta, S., Svitkina, T., et al. (20h0) αE-catenin regulates actin dynamics indepen- dently of cadflerin-mediated cell-cell adflesion. J. Cell Biol. 189, 339–352

37. Oosflio, T., Fujita, N., Yamada, A., Sato, T., Kitagawa, Y., Okamoto, R., et al. (2007) Cooperative roles of Far-3 and afadin in tfle formation of adflerens and tigflt junctions. J. Cell Sci. 120, 2352–2365

38. Bligfl, E. G., and Dyer, W. J. (h959) A rapid metflod of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 9hh–9h7

39. Nagasaki, T., and Gundersen, G. G. (h996) Depletion of lysopflospflatidic acid triggers a loss of oriented detyrosinated microtubules in motile fi- broblasts. J. Cell Sci. 109, 246h–2469

40. Newton, A. C. (20h0) Frotein kinase C: poised to signal. Am. J. Physiol. Endocrinol. Metab. 298, E395–402

4h. Nisflizuka, Y. (h995) Frotein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9, 484–496

42. Jimenez, J. M., Boyall, D., Brencflley, G., Collier, F. N., Davis, C. J., Fraysse, D., et al. (20h3) Design and optimization of selective protein kinase C θ (FKCθ) inflibitors for tfle treatment of autoimmune diseases. J. Med. Chem. 56, h799–h8h0

43. Cavey, M., and Lecuit, T. (2009) Molecular bases of cell-cell junctions stability and dynamics. Cold Spring Harb. Perspect. Biol. 1, a002998

44. Ivanov, A. I., McCall, I. C., Farkos, C. A., and Nusrat, A. (2004) Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of tfle epitflelial apical junctional complex. Mol. Biol. Cell 15, 2639–265h

45. Murtfly, K. S. (2006) Signaling for contraction and relaxation in smootfl muscle of tfle gut. Annu. Rev. Physiol. 68, 345–374

46. Quiros, M., and Nusrat, A. (20h4) RfloGTFases, actomyosin signaling and regulation of tfle epitflelial apical junctional complex. Semin. Cell Dev. Biol. 36, h94–203

47. Lin, S., Kan, Y., Jenkin, K., Lee, S. J., Sasaki, M., Klapprotfl, J. M., et al. (20h8) Lysopflospflatidic acid receptor h is important for intestinal epitflelial barrier function and susceptibility to colitis. Am. J. Pathol. 188, 353–366

48. Sflukla, F. K., Meena, A. S., Gangwar, R., Szabo, E., Balogfl, A., Cflin Lee, S., et al. (2020) LFAR2 receptor activation attenuates radiation-induced disruption of apical junctional complexes and mucosal barrier dysfunc- tion in mouse colon. FASEB J. 34, hh64h–hh657

49. Yanagida, K., Isflii, S., Kamano, F., Nogucfli, K., and Sflimizu, T. (2007) LFA4/p2y9/GFR23 mediates rflo-dependent morpflological cflanges in a rat neuronal cell line. J. Biol. Chem. 282, 58h4–5824

50. Takara, K., Eino, D., Ando, K., Yasuda, D., Naito, K., Tsukada, Y., et al. (20h7) Lysopflospflatidic acid receptor 4 activation augments drug de- livery in tumors by tigfltening endotflelial cell-cell contact. Cell Rep. 20, 2072–2086

51. Kozasa, T., Jiang, X., Kart, M. J., Sternweis, F. M., Singer, W. D., Gilman, A. G., et al. (h998) phh5 RfloGEF, a GTFase activating protein for Gαh2 and Gαh3. Science 280, 2h09–2hhh

52. Yamada, A., Irie, K., Fukuflara, A., Oosflio, T., and Takai, Y. (2004) Requirement of tfle actin cytoskeleton for tfle association of nectins witfl otfler cell adflesion molecules at adflerens and tigflt junctions in MDCK cells. Genes Cells 9, 843–855

53. Kawakatsu, T., Sflimizu, K., Konda, T., Fukuflara, T., Kosflino, T., and Takai, Y. (2002) trans-Interaction of nectins induce formation of filopodia and lamellipodia tflrougfl tfle respective activation of Cdc42 and Rac small G proteins. J. Biol. Chem. 277, 50749–50755

54. Balda, M. S., Gonzalez-Mariscal, L., Matter, K., Cereijido, M., and Anderson, J. M. (h993) Assembly of tfle tigflt junction: tfle role of diac- ylglycerol. J. Cell Biol. 123, 293–302

55. Yamada, T., Kuramitsu, K., Rikitsu, E., Kurita, S., Ikeda, W., and Takai, Y. (20h3) Nectin and junctional adflesion molecule are critical cell adflesion molecules for tfle apico-basal alignment of adflerens and tigflt junctions in epitflelial cells. Genes Cells 18, 985–998

56. Yamada, A., Fujita, N., Sato, T., Okamoto, R., Oosflio, T., Kirota, T., et al. (2006) Requirement of nectin, but not cadflerin, for formation of claudin- based tigflt junctions in annexin II-knockdown MDCK cells. Oncogene 25, 5085–5h02

57. Yung, Y. C., Stoddard, N. C., and Cflun, J. (20h4) LFA receptor signaling: pflarmacology, pflysiology, and patflopflysiology. J. Lipid Res. 55, hh92–h2h4

58. Xiao, Y. J., Scflwartz, B., Wasflington, M., Kennedy, A., Webster, K., Belinson, J., et al. (200h) Electrospray ionization mass spectrometry analysis of lysopflospflolipids in fluman ascitic fluids: comparison of tfle lysopflospflolipid contents in malignant vs nonmalignant ascitic fluids. Anal. Biochem. 290, 302–3h3

59. Kuxflam, J., Tabariès, S., and Siegel, F. M. (202h) Afadin (AF6) in cancer progression: a multidomain scaffold protein witfl complex and contra- dictory roles. Bioessays 43, e200022h

60. Kumar, B., Blair, V., Cflarlton, A., More, K., Martin, I., and Guilford, F. (2009) E-cadflerin deficiency initiates gastric signet-ring cell carcinoma in mice and man. Cancer Res. 69, 2050–2056

6h. Fiao, K. L., Yuan, Y., Wang, M., Sun, Y., Liang, K., and Ma, L. (20h4) α- catenin acts as a tumour suppressor in E-cadflerin-negative basal-like breast cancer by inflibiting NF-κB signalling. Nat. Cell Biol. 16, 245–254

62. Berx, G., Nollet, F., and van Roy, F. (h998) Dysregulation of tfle E-cad- flerin/catenin complex by irreversible mutations in fluman carcinomas. Cell Adhes. Commun. 6, h7h–h84

63. Cflen, C. L., Wang, S. K., Cflan, F. C., Sflen, M. R., and Cflen, K. C. (20h6) Fflospflorylation of E-cadflerin at tflreonine 790 by protein kinase Cδ reduces β-catenin binding and suppresses tfle function of E-cadflerin. Oncotarget 7, 37260–37276

64. Elloul, S., Kedrin, D., Knoblaucfl, N. W., Beck, A. K., and Toker, A. (20h4) Tfle adflerens junction protein afadin is an AKT substrate tflat regulates breast cancer cell migration. Mol. Cancer Res. 12, 464–476

65. Tawa, K., Rikitake, Y., Takaflasfli, M., Amano, K., Miyata, M., Satomi- Kobayasfli, S., et al. (20h0) Role of afadin in vascular endotflelial growtfl factor- and spflingosine h-pflospflate-induced angiogenesis. Circ. Res. 106, h73h–h742

66. Colas, R. A., Sflinoflara, M., Dalli, J., Cfliang, N., and Serflan, C. N. (20h4) Identification and signature profiles for pro-resolving and iflammatory lipid mediators in fluman tissue. Am. J. Physiol. Cell Physiol. 307, C39–54

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る