リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ossification of the posterior longitudinal ligament located on the concave side of the apex vertebra in adult spinal deformity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ossification of the posterior longitudinal ligament located on the concave side of the apex vertebra in adult spinal deformity

Koshimizu, Hiroyuki Ando, Kei Kobayashi, Kazuyoshi Nakashima, Hiroaki Machino, Masaaki Ito, Sadayuki Kanbara, Shunsuke Inoue, Taro Yamaguchi, Hidetoshi Imagama, Shiro 名古屋大学

2021.05

概要

A 48-year-old female patient presented with discomfort in the front of the chest. Whole spinal X-ray revealed a thoracic curve of 52°, and thoracic computed tomography (CT) myelography and magnetic resonance imaging (MRI) showed that ossification of the posterior longitudinal ligament (OPLL) on the concave side of the apex vertebra (T9) had highly compressed the spinal cord. Cervical MRI also showed that the C4–C5 intervertebral disc herniation mildly compressed the spinal nerve. In concomitant surgery, the patient underwent cervical laminoplasty, in which OPLL was removed by decompressive laminectomy and posterior correction surgery.In patients with adult spinal deformity (ASD), asymmetric mechanical stress at the apex vertebra can cause various abnormal conditions. Long-term local mechanical stress on the concave side of the apex vertebra might have affected OPLL formation in the present case. This is the first report of a surgical case for an ossification located on the concave side of the apex vertebra in a patient with ASD. Mechanical stress at the concave side of the apex vertebra was suspected to be a cause of formation of OPLL.

参考文献

1 Jimbo S, Kobayashi T, Aono K, Atsuta Y, Matsuno T. Epidemiology of degenerative lumbar sco- liosis: a community-based cohort study. Spine (Phila Pa 1976). 2012;37(20):1763–1770. doi:10.1097/ BRS.0b013e3182575eaa.

2 Bernstein DN, Prong M, Kurucan E, et al. National Trends and Complications in the Surgical Management of Ossification of the Posterior Longitudinal Ligament (OPLL). Spine (Phila Pa 1976). 2019;44(22):1550–1557. doi:10.1097/BRS.0000000000003127.

3 Imagama S, Ando K, Kobayashi K, et al. Factors for a Good Surgical Outcome in Posterior Decompres- sion and Dekyphotic Corrective Fusion with Instrumentation for Thoracic Ossification of the Posterior Longitudinal Ligament: Prospective Single-Center Study. Oper Neurosurg (Hagerstown). 2017;13(6):661–669. doi:10.1093/ons/opx043.

4 Imagama S, Ando K, Takeuchi K, et al. Perioperative Complications After Surgery for Thoracic Ossification of Posterior Longitudinal Ligament: A Nationwide Multicenter Prospective Study. Spine (Phila Pa 1976). 2018;43(23):E1389–E1397. doi:10.1097/BRS.0000000000002703.

5 Wang P, Teng Z, Liu X, Liu X, Kong C, Lu S. A new single nucleotide polymorphism affects the predis- position to thoracic ossification of the posterior longitudinal ligament. J Orthop Surg Res. 2019;14(1):438. doi:10.1186/s13018-019-1481-6.

6 Imagama S, Ando K, Ito Z, et al. Resection of Beak-Type Thoracic Ossification of the Posterior Longitudinal Ligament from a Posterior Approach under Intraoperative Neurophysiological Monitoring for Paralysis after Posterior Decompression and Fusion Surgery. Global Spine J. 2016;6(8):812–821. doi:10.1055/s-0036-1579662.

7 Imagama S, Ando K, Ito Z, et al. Risk Factors for Ineffectiveness of Posterior Decompression and Dekyphotic Corrective Fusion with Instrumentation for Beak-Type Thoracic Ossification of the Posterior Longitudinal Ligament: A Single Institute Study. Neurosurgery. 2017;80(5):800–808. doi:10.1093/neuros/ nyw130.

8 Weinstein SL. Natural history. Spine (Phila Pa 1976). 1999;24(24):2592–2600. doi:10.1097/00007632- 199912150-00006.

9 Li QY, Zhong GB, Liu ZD, Lao LF. Effect of Asymmetric Tension on Biomechanics and Metabolism of Vertebral Epiphyseal Plate in a Rodent Model of Scoliosis. Orthop Surg. 2017;9(3):311–318. doi:10.1111/ os.12344.

10 Stokes IAF, Iatridis JC. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine (Phila Pa 1976). 2004;29(23):2724–2732. doi:10.1097/01.brs.0000146049.52152. da.

11 Takatsu T, Ishida Y, Suzuki K, Inoue H. Radiological study of cervical ossification of the posterior longitudinal ligament. J Spinal Disord. 1999;12(3):271–273.

12 Ando K, Imagama S, Ito Z, et al. Radiologic evaluation after posterior instrumented surgery for thoracic ossification of the posterior longitudinal ligament: union between rostral and caudal ossifications. J Spinal Disord Tech. 2014;27(3):181–184. doi:10.1097/BSD.0b013e3182a3589d.

13 Kanno H, Takahashi T, Aizawa T, Hashimoto K, Itoi E, Ozawa H. Recurrence of ossification of ligamentum flavum at the same intervertebral level in the thoracic spine: a report of two cases and review of the literature. Eur Spine J. 2018;27(Suppl 3):359–367. doi:10.1007/s00586-017-5281-6.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る