リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nonlinear Response of Resonant-Tunneling-Diode Terahertz Oscillator」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nonlinear Response of Resonant-Tunneling-Diode Terahertz Oscillator

Hiraoka, Tomoki 京都大学 DOI:10.14989/doctor.k23451

2021.09.24

概要

共鳴トンネルダイオード(RTD)発振器は、半導体量子井戸構造における共鳴トンネル効果により得られる微分負性コンダクタンスを利用した電気的な自律発振器である。 RTDにおいては、共鳴トンネル系に特有の量子効果が重要となるダイナミクスが存在することが期待される。例えば、テラヘルツ周波数帯におけるRTDの検出器動作においては、強い光電場によって量子井戸の共鳴トンネル特性が変化する現象(光アシストトンネリング)を利用していることが知られている。一方、RTDテラヘルツ発振器の研究においては、自由発振状態の発振周波数とパワーが主に注目されてきており、量子効果の役割は定かでない。本論文では、自律振動子の個別の性質が周期駆動力や時間遅れフィードバック、ノイズといった駆動力に対する応答として現れることに着目して、RTDテラヘルツ発振器の注入同期と光フィードバックに対する非線形応答特性を調べた。

まず、RTD発振器からのテラヘルツ光のスペクトルや位相を精密計測するために、ヘテロダイン計測システムを構築した。光周波数コムを利用した標準テラヘルツ光発生と計測システムからの戻り光を排除するためのアイソレータを開発した結果、周波数分解能 120 mHz、帯域幅 10 GHzでのスペクトル計測と時間分解能 100 psのヘテロダイン時間波形計測が可能となった。

次に、開発したヘテロダイン計測システムを用いてRTDテラヘルツ発振器の注入同期現象を詳しく調べた。注入同期が起きる周波数範囲であるロッキングレンジは注入強度依存性に対して、線形に振舞うことがわかった。この特性は、弱い非線形性を有する振動子に適用可能なAdlerモデルにより定性的に理解できることがわかった。また、低強度での注入において、ロッキングレンジが自由発振状態を支配しているノイズ幅と同程度になった時、注入同期が安定化することを実験的に示した。また、バイアス電圧によっては、Adlerモデルでは説明できない非対称なロッキングレンジが現れることを明らかにした。回路シミュレーションから, RTDの非線形キャパシタンスがその原因となりうることを示した。

さらに、RTDテラヘルツ発振器の光フィードバックに対する応答を調べた。その結果、光フィードバックによって複数の光学モードが生じ、それらがモード同期することを発見した。モード同期状態における電場の時間波形は周波数変調的であることがわかった。このメカニズムを理解するために、RTDの非線形キャパシタンスを含む回路シミュレーションを行った。その結果、非線形キャパシタンスおよび複数の反射面からの光フィードバックがモード同期に必要であることがわかった。以上から、このモード同期現象は、従来からレーザーで知られているモード同期の機構とは全く異なった機構であることを結論した。

最後に、非線形キャパシタンスの物理的起源に関して考察を行い、RTDにおける共鳴トンネル現象がその要因となり得ることを指摘した。

参考文献

[1] D L Woolard, R Brown, M Pepper, and M Kemp. Terahertz frequency sensing and imaging: A time of reckoning future applications? Proc. IEEE, Vol. 93, No. 10, pp. 1722–1743, October 2005.

[2] T Kleine-Ostmann and T Nagatsuma. A review on terahertz communications research. J. Infrared Millim. Terahertz Waves, Vol. 32, No. 2, pp. 143–171, February 2011.

[3] M Asada and S Suzuki. Terahertz emitter using Resonant-Tunneling diode and applications. Sensors, Vol. 21, No. 4, p. 1384, February 2021.

[4] E R Brown, J R S¨oderstr¨om, C D Parker, L J Mahoney, K M Molvar, and T C McGill. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes. Appl. Phys. Lett., Vol. 58, No. 20, pp. 2291–2293, May 1991.

[5] M Feiginov, C Sydlo, O Cojocari, and P Meissner. High-frequency nonlinear characteristics of resonant-tunnelling diodes. Appl. Phys. Lett., Vol. 99, No. 13, p. 133501, September 2011.

[6] M Asada and S Suzuki. Room-Temperature oscillation of resonant tunneling diodes close to 2 THz and their functions for various applications. J. Infrared Millim. Terahertz Waves, Vol. 37, No. 12, pp. 1185–1198, December 2016.

[7] T Maekawa, H Kanaya, S Suzuki, and M Asada. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl. Phys. Express, Vol. 9, No. 2, p. 024101, January 2016.

[8] R Izumi, S Suzuki, and M Asada. 1.98 THz resonant-tunneling-diode os- cillator with reduced conduction loss by thick antenna electrode. In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pp. 1–2. ieeexplore.ieee.org, August 2017.

[9] M Bezhko, S Suzuki, and M Asada. Frequency increase in resonant-tunneling diode cavity-type terahertz oscillator by simulation-based structure optimiza- tion. Jpn. J. Appl. Phys., Vol. 59, No. 3, p. 032004, March 2020.

[10] K Tsuruda, Y Nishida, T Mukai, K Terumoto, Y Miyamae, Y Oku, and K Nakahara. Development of practical terahertz packages for resonant tun- neling diode oscillators and detectors. In 2020 IEEE International Sympo-sium on Radio-Frequency Integration Technology (RFIT), pp. 193–195. ieeex- plore.ieee.org, September 2020.

[11] S Suzuki, M Shiraishi, H Shibayama, and M Asada. High-Power operation of terahertz oscillators with resonant tunneling diodes using Impedance-Matched antennas and array configuration. IEEE J. Sel. Top. Quantum Electron., Vol. 19, No. 1, pp. 8500108–8500108, January 2013.

[12] K Kasagi, S Suzuki, and M Asada. Large-scale array of resonant-tunneling- diode terahertz oscillators for high output power at 1 THz. J. Appl. Phys., Vol. 125, No. 15, p. 151601, April 2019.

[13] S H Strogatz. Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering, Second Edition. CRC Press, September 2018.

[14] B van der Pol. LXXXVIII.On “relaxation-oscillations”. Lond. Edinb. Dublin Philos. Mag. J. Sci., Vol. 2, No. 11, pp. 978–992, November 1926.

[15] K Vahala and A Yariv. Semiclassical theory of noise in semiconductor lasers- part II. IEEE J. Quantum Electron., Vol. 19, No. 6, pp. 1102–1109, June 1983.

[16] Y Yamamoto. AM and FM quantum noise in semiconductor lasers - part i: Theoretical analysis. IEEE J. Quantum Electron., Vol. 19, No. 1, pp. 34–46, January 1983.

[17] B van der Pol and J van der Mark. LXXII.The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Lond. Edinb. Dublin Philos. Mag. J. Sci., Vol. 6, No. 38, pp. 763–775, November 1928.

[18] M Asada. Theoretical analysis of spectral linewidth of terahertz oscillators using resonant tunneling diodes and their coupled arrays. J. Appl. Phys., Vol. 108, No. 3, p. 034504, August 2010.

[19] N Orihashi, S Suzuki, and M Asada. One THz harmonic oscillation of resonant tunneling diodes. Appl. Phys. Lett., Vol. 87, No. 23, p. 233501, December 2005.

[20] S Suzuki, N Orihashi, and M Asada. Mutual injection locking between Sub- THz oscillating resonant tunneling diodes. Jpn. J. Appl. Phys., Vol. 44, No. 11L, p. L1439, November 2005.

[21] P K Tien and J P Gordon. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys. Rev., Vol. 129, No. 2, pp. 647–651, January 1963.

[22] L P Kouwenhoven, S Jauhar, J Orenstein, P L McEuen, Y Nagamune, J Mo- tohisa, and H Sakaki. Observation of photon-assisted tunneling through a quantum dot. Phys. Rev. Lett., Vol. 73, No. 25, pp. 3443–3446, December 1994.

[23] S Kumar, C W I Chan, Q Hu, and J L Reno. Two-well terahertz quantum- cascade laser with direct intrawell-phonon depopulation. Appl. Phys. Lett., Vol. 95, No. 14, p. 141110, October 2009.

[24] H Drexler, J S Scott, S J Allen, K L Campman, and A C Gossard. Photon- assisted tunneling in a resonant tunneling diode: Stimulated emission and absorption in the THz range. Appl. Phys. Lett., Vol. 67, No. 19, pp. 2816– 2818, November 1995.

[25] N S Wingreen. Rectification by resonant tunneling diodes. Appl. Phys. Lett., Vol. 56, No. 3, pp. 253–255, January 1990.

[26] G Iannaccone, G Lombardi, M Macucci, and B Pellegrini. Enhanced shot noise in resonant tunneling: Theory and experiment. Phys. Rev. Lett., Vol. 80, No. 5, pp. 1054–1057, February 1998.

[27] H C Liu, J Li, G C Aers, C R Leavens, M Buchanan, and Z R Wasilewski. Shot-noise suppression in resonant tunneling. Phys. Rev. B Condens. Matter, Vol. 51, No. 8, pp. 5116–5120, February 1995.

[28] L Eaves, M L Leadbeater, D G Hayes, E S Alves, F W Sheard, G A Toombs, P E Simmonds, M S Skolnick, M Henini, and O H Hughes. Electrical and spectroscopic studies of space-charged buildup, energy relaxation and mag- netically enhanced bistability in resonant-tunneling structures. Solid State Electron., Vol. 32, No. 12, pp. 1101–1108, December 1989.

[29] E F Schubert, F Capasso, A L Hutchinson, S Sen, and A C Gossard. Observa- tion of charge storage and intersubband relaxation in resonant tunneling via a high sensitivity capacitive technique. Appl. Phys. Lett., Vol. 57, No. 26, pp. 2820–2822, December 1990.

[30] T Wei and S Stapleton. Effect of spacer layers on capacitance of resonant tunneling diodes. J. Appl. Phys., Vol. 76, No. 2, pp. 1287–1290, July 1994.

[31] M N Feiginov. Effect of the coulomb interaction on the response time and impedance of the resonant-tunneling diodes. Appl. Phys. Lett., Vol. 76, No. 20, pp. 2904–2906, May 2000.

[32] Q Liu, A Seabaugh, P Chahal, and F J Morris. Unified AC model for the resonant tunneling diode. IEEE Trans. Electron Devices, Vol. 51, No. 5, pp. 653–657, May 2004.

[33] M Asada, S Suzuki, and N Kishimoto. Resonant tunneling diodes for Sub- Terahertz and terahertz oscillators. Jpn. J. Appl. Phys., Vol. 47, No. 6R, p. 4375, June 2008.

[34] P Holmes and E C Zeeman. A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. Lond. A, Vol. 292, No. 1394, pp. 419–448, October 1979.

[35] S Novak and R G Frehlich. Transition to chaos in the duffing oscillator. Phys. Rev. A, Vol. 26, No. 6, pp. 3660–3663, December 1982.

[36] Y H Kao and C S Wang. Analog study of bifurcation structures in a van der pol oscillator with a nonlinear restoring force. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, Vol. 48, No. 4, pp. 2514–2520, October 1993.

[37] A Pikovsky, J Kurths, M Rosenblum, and J Kurths. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, April 2003.

[38] Y Kuramoto. Chemical Oscillations, Waves, and Turbulence. Courier Corpo- ration, January 2003.

[39] R Adler. A study of locking phenomena in oscillators. Proceedings of the IRE, Vol. 34, No. 6, pp. 351–357, June 1946.

[40] R Lang. Injection locking properties of a semiconductor laser. IEEE J. Quan- tum Electron., Vol. 18, No. 6, pp. 976–983, June 1982.

[41] F Mogensen, H Olesen, and G Jacobsen. Locking conditions and stability properties for a semiconductor laser with external light injection. IEEE J. Quantum Electron., Vol. 21, No. 7, pp. 784–793, July 1985.

[42] J Ohtsubo. Semiconductor Lasers: Stability, Instability and Chaos. Springer, October 2012.

[43] B Razavi. A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circuits, Vol. 39, No. 9, pp. 1415–1424, September 2004.

[44] K Kurokawa. Injection locking of microwave solid-state oscillators. Proc. IEEE, Vol. 61, No. 10, pp. 1386–1410, October 1973.

[45] M R Guevara, L Glass, and A Shrier. Phase locking, period-doubling bifurca- tions, and irregular dynamics in periodically stimulated cardiac cells. Science, Vol. 214, No. 4527, pp. 1350–1353, December 1981.

[46] R Guttman, S Lewis, and J Rinzel. Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. J. Physiol., Vol. 305, pp. 377– 395, August 1980.

[47] A Demir, A Mehrotra, and J Roychowdhury. Phase noise in oscillators: a uni- fying theory and numerical methods for characterization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 47, No. 5, pp. 655–674, May 2000.

[48] L Gammaitoni, P H¨anggi, P Jung, and F Marchesoni. Stochastic resonance. Rev. Mod. Phys., Vol. 70, No. 1, pp. 223–287, January 1998.

[49] H Gang, T Ditzinger, C Z Ning, and H Haken. Stochastic resonance without external periodic force. Phys. Rev. Lett., Vol. 71, No. 6, pp. 807–810, August 1993.

[50] A S Pikovsky and J Kurths. Coherence resonance in a Noise-Driven excitable system. Phys. Rev. Lett., Vol. 78, No. 5, pp. 775–778, February 1997.

[51] G Giacomelli, M Giudici, S Balle, and J R Tredicce. Experimental evidence of coherence resonance in an optical system. Phys. Rev. Lett., Vol. 84, No. 15, pp. 3298–3301, April 2000.

[52] J M Buldu´, J Garc´ıa-Ojalvo, and M C Torrent. Delay-induced resonances in an optical system with feedback. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., Vol. 69, No. 4 Pt 2, p. 046207, April 2004.

[53] V Noviˇcenko and K Pyragas. Phase reduction of weakly perturbed limit cycle oscillations in time-delay systems. Physica D, Vol. 241, No. 12, pp. 1090–1098, June 2012.

[54] G Agrawal. Line narrowing in a single-mode injection laser due to external optical feedback. IEEE J. Quantum Electron., Vol. 20, No. 5, pp. 468–471, May 1984.

[55] P Glas, R Mu¨ller, and A Klehr. Bistability, self-sustained oscillations, and irregular operation of a GaAs laser coupled to an external resonator. Opt. Commun., Vol. 47, No. 4, pp. 297–301, September 1983.

[56] D Lenstra, M Van Vaalen, and B Jaskorzyn´ska. On the theory of a single-mode laser with weak optical feedback. Physica B+C, Vol. 125, No. 2, pp. 255–264, August 1984.

[57] D Lenstra, B Verbeek, and A Den Boef. Coherence collapse in single-mode semiconductor lasers due to optical feedback. IEEE J. Quantum Electron., Vol. 21, No. 6, pp. 674–679, June 1985.

[58] Y Cho and T Umeda. Observation of chaos in a semiconductor laser with delayed feedback. Opt. Commun., Vol. 59, No. 2, pp. 131–136, August 1986.

[59] W Just, T Bernard, M Ostheimer, E Reibold, and H Benner. Mechanism of time-delayed feedback control. Phys. Rev. Lett., Vol. 78, No. 2, pp. 203–206, January 1997.

[60] J Faist, F Capasso, D L Sivco, C Sirtori, A L Hutchinson, and A Y Cho. Quantum cascade laser. Science, Vol. 264, No. 5158, pp. 553–556, April 1994.

[61] S K Dana, D C Sengupta, and K D Edoh. Chaotic dynamics in josephson junction. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 48, No. 8, pp. 990–996, August 2001.

[62] M C Cassidy, A Bruno, S Rubbert, M Irfan, J Kammhuber, R N Schouten, A R Akhmerov, and L P Kouwenhoven. Demonstration of an ac josephson junction laser. Science, Vol. 355, No. 6328, pp. 939–942, March 2017.

[63] B Kelleher, C Bonatto, G Huyet, and S P Hegarty. Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot- based devices. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., Vol. 83, No. 2 Pt 2, p. 026207, February 2011.

[64] A Nahata, J T Yardley, and T F Heinz. Free-space electro-optic detection of continuous-wave terahertz radiation. Appl. Phys. Lett., Vol. 75, No. 17, pp. 2524–2526, October 1999.

[65] T Ishibashi and H Ito. Uni-traveling-carrier photodiodes. J. Appl. Phys., Vol. 127, No. 3, p. 031101, January 2020.

[66] H Ito and T Ishibashi. Low-noise heterodyne detection of terahertz waves at room temperature using zero-biased fermi-level managed barrier diode. Elec- tron. Lett., Vol. 54, No. 18, pp. 1080–1082, September 2018.

[67] K Karashima, R Yokoyama, M Shiraishi, S Suzuki, S Aoki, and M Asada. Measurement of oscillation frequency and spectral linewidth of Sub-Terahertz InP-Based resonant tunneling diode oscillators using Ni-InP schottky barrier diode. Jpn. J. Appl. Phys., Vol. 49, No. 2R, p. 020208, February 2010.

[68] G C Hsieh and J C Hung. Phase-locked loop techniques. a survey. IEEE Trans. Ind. Electron., Vol. 43, No. 6, pp. 609–615, December 1996.

[69] A C Bordonalli, C Walton, and A J Seeds. High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop. J. Lightwave Technol., Vol. 17, No. 2, pp. 328–342, 1999.

[70] K Ogino, S Suzuki, and M Asada. Spectral narrowing of a Varactor-Integrated Resonant-Tunneling-Diode terahertz oscillator by Phase-Locked loop. J. In- frared Millim. Terahertz Waves, Vol. 38, No. 12, pp. 1477–1486, December 2017.

[71] Y Nishida, N Nishigami, S Diebold, J Kim, M Fujita, and T Nagatsuma. Terahertz coherent receiver using a single resonant tunnelling diode. Sci. Rep., Vol. 9, No. 1, p. 18125, December 2019.

[72] Y Takida, S Suzuki, M Asada, and H Minamide. Sensitive terahertz-wave detector responses originated by negative differential conductance of resonant- tunneling-diode oscillator. Appl. Phys. Lett., Vol. 117, No. 2, p. 021107, July 2020.

[73] K Arzi, S Suzuki, A Rennings, D Erni, N Weimann, M Asada, and W Prost. Subharmonic injection locking for phase and frequency control of RTD-Based THz oscillator. IEEE Transactions on Terahertz Science and Technology, Vol. 10, No. 2, pp. 221–224, March 2020.

[74] M Shalaby, M Peccianti, Y Ozturk, and R Morandotti. A magnetic non- reciprocal isolator for broadband terahertz operation. Nat. Commun., Vol. 4, p. 1558, 2013.

[75] S Kobayashi and T Kimura. Injection locking in AlGaAs semiconductor laser. IEEE J. Quantum Electron., Vol. 17, No. 5, pp. 681–689, May 1981.

[76] R Hui, A D’Ottavi, A Mecozzi, and P Spano. Injection locking in distributed feedback semiconductor lasers. IEEE J. Quantum Electron., Vol. 27, No. 6, pp. 1688–1695, June 1991.

[77] P Maffezzoni and D D’Amore. Phase-Noise reduction in oscillators via Small- Signal injection. IEEE Trans. Circuits Syst. I Regul. Pap., Vol. 58, No. 10, pp. 2498–2507, October 2011.

[78] M Fujita, M Toyoda, S Hara, I Watanabe, and A Kasamatsu. Design of electro- magnetic wave absorption sheet with transparency and flexibility in sub-THz bands. In 2020 IEEE International Symposium on Radio-Frequency Integra- tion Technology (RFIT), pp. 82–84. ieeexplore.ieee.org, September 2020.

[79] S Verma, H R Rategh, and T H Lee. A unified model for injection-locked frequency dividers. IEEE J. Solid-State Circuits, Vol. 38, No. 6, pp. 1015– 1027, June 2003.

[80] A Taflove and S C Hagness. Computational electrodynamics: the finite- difference time-domain method. Artech house, 2005.

[81] S Diebold, S Nakai, K Nishio, J Kim, K Tsuruda, T Mukai, M Fujita, and T Nagatsuma. Modeling and simulation of terahertz resonant tunneling Diode- Based circuits. IEEE Transactions on Terahertz Science and Technology, Vol. 6, No. 5, pp. 716–723, September 2016.

[82] G H B Hansson and K I Lundstrom. Stability criteria for Phase-Locked os- cillators. IEEE Trans. Microw. Theory Tech., Vol. 20, No. 10, pp. 641–645, October 1972.

[83] K Kurokawa. Some basic characteristics of broadband negative resistance oscillator circuits. The Bell System Technical Journal, Vol. 48, No. 6, pp. 1937–1955, July 1969.

[84] M Asada and S Suzuki. Theoretical analysis of external feedback effect on os- cillation characteristics of resonant-tunneling-diode terahertz oscillators. Jpn. J. Appl. Phys., Vol. 54, No. 7, p. 070309, June 2015.

[85] L D Manh, S Diebold, K Nishio, Y Nishida, J Kim, T Mukai, M Fujita, and T Nagatsuma. External feedback effect in terahertz resonant tunneling diode oscillators. IEEE Transactions on Terahertz Science and Technology, Vol. 8, No. 4, pp. 455–464, July 2018.

[86] A K Dal Bosco, S Suzuki, M Asada, and H Minamide. Feedback effects and nonlinear dynamics in resonant tunneling diodes. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pp. 1–2, September 2018.

[87] M S Keshner. 1/f noise. Proc. IEEE, Vol. 70, No. 3, pp. 212–218, March 1982.

[88] T Fortier and E Baumann. 20 years of developments in optical frequency comb technology and applications. Communications Physics, Vol. 2, No. 1, pp. 1–16, December 2019.

[89] D M Mittleman, R H Jacobsen, R Neelamani, R G Baraniuk, and M C Nuss. Gas sensing using terahertz time-domain spectroscopy. Appl. Phys. B, Vol. 67, No. 3, pp. 379–390, September 1998.

[90] T Yasui, Y Kabetani, E Saneyoshi, S Yokoyama, and T Araki. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett., Vol. 88, No. 24, p. 241104, June 2006.

[91] R K¨ohler, A Tredicucci, F Beltram, H E Beere, E H Linfield, A G Davies, D A Ritchie, R C Iotti, and F Rossi. Terahertz semiconductor-heterostructure laser. Nature, Vol. 417, No. 6885, pp. 156–159, May 2002.

[92] M Brandstetter, C Deutsch, M Krall, H Detz, D C MacFarland, T Zederbauer, A M Andrews, W Schrenk, G Strasser, and K Unterrainer. High power ter- ahertz quantum cascade lasers with symmetric wafer bonded active regions. Appl. Phys. Lett., Vol. 103, No. 17, p. 171113, October 2013.

[93] D Burghoff, T Y Kao, N Han, C W I Chan, X Cai, Y Yang, D J Hayton, J R Gao, J L Reno, and Q Hu. Terahertz laser frequency combs. Nat. Photonics, Vol. 8, No. 6, pp. 462–467, May 2014.

[94] M R¨osch, G Scalari, M Beck, and J Faist. Octave-spanning semiconductor laser. Nat. Photonics, Vol. 9, No. 1, pp. 42–47, November 2014.

[95] M Wienold, B R¨oben, L Schrottke, and H T Grahn. Evidence for frequency comb emission from a Fabry-P´erot terahertz quantum-cascade laser. Opt. Express, Vol. 22, No. 25, pp. 30410–30424, December 2014.

[96] M R¨osch, M Beck, M J Su¨ess, D Bachmann, K Unterrainer, J Faist, and G Scalari. Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation. Nanophotonics, Vol. 7, No. 1, pp. 237–242, January 2018.

[97] Q Lu, F Wang, D Wu, S Slivken, and M Razeghi. Room temperature terahertz semiconductor frequency comb. Nat. Commun., Vol. 10, No. 1, p. 2403, June 2019.

[98] L Consolino, M Nafa, M De Regis, F Cappelli, S Bartalini, A Ito, M Hitaka, T Dougakiuchi, T Edamura, P De Natale, and K Fujita. Direct observation of terahertz frequency comb generation in Difference-Frequency quantum cascade lasers. NATO Adv. Sci. Inst. Ser. E Appl. Sci., Vol. 11, No. 4, p. 1416, February 2021.

[99] C Wang, B Perkins, Z Wang, and R Han. Molecular detection for unconcen- trated gas with ppm sensitivity using 220-to-320-GHz Dual-Frequency-Comb spectrometer in CMOS. IEEE Trans. Biomed. Circuits Syst., Vol. 12, No. 3, pp. 709–721, June 2018.

[100] M M Assefzadeh and A Babakhani. Broadband Oscillator-Free THz pulse generation and radiation based on direct Digital-to-Impulse architecture. IEEE J. Solid-State Circuits, Vol. 52, No. 11, pp. 2905–2919, November 2017.

[101] L Jaurigue, O Nikiforov, E Sch¨oll, S Breuer, and K Lu¨dge. Dynamics of a passively mode-locked semiconductor laser subject to dual-cavity optical feedback. Phys Rev E, Vol. 93, No. 2, p. 022205, February 2016.

[102] T S Mansuripur, C Vernet, P Chevalier, G Aoust, B Schwarz, F Xie, C Caneau, K Lascola, C Zah, D P Caffey, T Day, L J Missaggia, M K Connors, C A Wang, A Belyanin, and F Capasso. Single-mode instability in standing-wave lasers: The quantum cascade laser as a self-pumped parametric oscillator. Phys. Rev. A, Vol. 94, No. 6, p. 063807, December 2016.

[103] R Arkhipov, A Pimenov, M Radziunas, D Rachinskii, A G Vladimirov, D Ar- senijevi´c, H Schmeckebier, and D Bimberg. Hybrid mode locking in semi- conductor lasers: Simulations, analysis, and experiments. IEEE J. Sel. Top. Quantum Electron., Vol. 19, No. 4, pp. 1100208–1100208, July 2013.

[104] E R Brown, O B McMahon, L J Mahoney, and K M Molvar. SPICE model of the resonant-tunnelling diode. Electron. Lett., Vol. 32, No. 10, pp. 938–940, May 1996.

[105] G Ternent and D J Paul. SPICE modeling of the scaling of resonant tunneling diodes and the effects of sidewall leakage. IEEE Trans. Electron Devices, Vol. 59, No. 12, pp. 3555–3560, December 2012.

[106] D B Leeson. A simple model of feedback oscillator noise spectrum. Proc. IEEE, Vol. 54, No. 2, pp. 329–330, February 1966.

[107] A Hajimiri and T H Lee. A general theory of phase noise in electrical oscil- lators. IEEE J. Solid-State Circuits, Vol. 33, No. 2, pp. 179–194, February 1998.

[108] A Demir. Phase noise and timing jitter in oscillators with colored-noise sources. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Ap- plications, Vol. 49, No. 12, pp. 1782–1791, December 2002.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る