リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development

Lin, Chia-Wen Ellegood, Jacob Tamada, Kota Miura, Ikuo Konda, Mikiko Takeshita, Kozue Atarashi, Koji Lerch, P. Jason Wakana, Shigeharu McHugh, J. Thomas Takumi, Tooru 神戸大学

2023.03.07

概要

The BTBR T⁺Itpr3ᵗᶠ/J (BTBR/J) strain is one of the most valid models of idiopathic autism, serving as a potent forward genetics tool to dissect the complexity of autism. We found that a sister strain with an intact corpus callosum, BTBR TF/ArtRbrc (BTBR/R), showed more prominent autism core symptoms but moderate ultrasonic communication/normal hippocampus-dependent memory, which may mimic autism in the high functioning spectrum. Intriguingly, disturbed epigenetic silencing mechanism leads to hyperactive endogenous retrovirus (ERV), a mobile genetic element of ancient retroviral infection, which increases de novo copy number variation (CNV) formation in the two BTBR strains. This feature makes the BTBR strain a still evolving multiple-loci model toward higher ASD susceptibility. Furthermore, active ERV, analogous to virus infection, evades the integrated stress response (ISR) of host defense and hijacks the transcriptional machinery during embryonic development in the BTBR strains. These results suggest dual roles of ERV in the pathogenesis of ASD, driving host genome evolution at a long-term scale and managing cellular pathways in response to viral infection, which has immediate effects on embryonic development. The wild-type Draxin expression in BTBR/R also makes this substrain a more precise model to investigate the core etiology of autism without the interference of impaired forebrain bundles as in BTBR/J.

この論文で使われている画像

参考文献

1. Maenner MJ, Shaw KA, Bakian AV, Bilder DA, Durkin MS, Esler A, et al. Prevalence

and characteristics of autism spectrum disorder among children aged 8 years autism and developmental disabilities monitoring network, 11 sites, United

States, 2018. Morbidity Mortal Wkly Rep. 2021;70:1–16.

2. Bourgeron T. From the genetic architecture to synaptic plasticity in autism

spectrum disorder. Nat Rev Neurosci. 2015;16:551–63.

3. Geschwind DH. Genetics of autism spectrum disorders. Trends Cogn Sci.

2011;15:409–16.

4. Rylaarsdam L, Guemez-Gamboa A. Genetic causes and modifiers of autism

spectrum disorder. Front Cell Neurosci. 2019;13:385.

5. Takumi T, Tamada K. CNV biology in neurodevelopmental disorders. Curr Opin

Neurobiol. 2018;48:183–92.

6. Moy SS, Nadler JJ, Young NB, Perez A, Holloway LP, Barbaro RP, et al. Mouse

behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain

Res. 2007;176:4–20.

7. Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for

mouse models of autism. Nat Rev Neurosci. 2010;11:490–502.

8. Bolivar VJ, Walters SR, Phoenix JL. Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav Brain Res. 2007;176:21–6.

9. Lin CW, Septyaningtrias DE, Chao HW, Konda M, Atarashi K, Takeshita K, et al. A

common epigenetic mechanism across different cellular origins underlies systemic immune dysregulation in an idiopathic autism mouse model. Mol Psychiatry. 2022;27:3343–54.

10. RBRC01206 - BTBRTF/ArtRbrc - RIKEN Bioresource Research Center[online] https://

knowledge.brc.riken.jp/resource/animal/card?__lang__=en&brc_no=RBRC01206.

11. 002282 - BTBR T<+> Itpr3<tf>/J - The Jackson Laboratory [online] https://

www.jax.org/strain/002282.

12. Kishimoto K, Nomura J, Ellegood J, Fukumoto K, Lerch JP, Moreno-De-Luca D,

et al. Behavioral and neuroanatomical analyses in a genetic mouse model of 2q13

duplication. Genes Cells. 2017;22:436–51.

13. de Guzman AE, Wong MD, Gleave JA, Nieman BJ. Variations in post-perfusion

immersion fixation and storage alter MRI measurements of mouse brain morphometry. NeuroImage. 2016;142:687–95.

14. Bock NA, Nieman BJ, Bishop JB, Mark, Henkelman R. In vivo multiple-mouse MRI

at 7 Tesla. Magn Reson Med. 2005;54:1311–6.

15. Jones DK, Simmons A, Williams SC, Horsfield MA. Non-invasive assessment of

axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn

Reson Med. 1999;42:37–41.

16. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration

of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr.

1994;18:192–205.

17. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image

registration with cross-correlation: evaluating automated labeling of elderly and

neurodegenerative brain. Med Image Anal. 2008;12:26–41.

18. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011;54:2033–44.

19. Lerch JP, Carroll JB, Dorr A, Spring S, Evans AC, Hayden MR, et al. Cortical

thickness measured from MRI in the YAC128 mouse model of Huntington’s

disease. NeuroImage. 2008;41:243–51.

20. Lerch JP, Carroll JB, Spring S, Bertram LN, Schwab C, Hayden MR, et al. Automated

deformation analysis in the YAC128 Huntington disease mouse model. NeuroImage. 2008;39:32–39.

21. Nieman BJ, Flenniken AM, Adamson SL, Henkelman RM, Sled JG. Anatomical

phenotyping in the brain and skull of a mutant mouse by magnetic resonance

imaging and computed tomography. Physiol Genom. 2006;24:154–62.

22. Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM. High resolution threedimensional brain atlas using an average magnetic resonance image of 40 adult

C57Bl/6J mice. NeuroImage. 2008;42:60–9.

23. Steadman PE, Ellegood J, Szulc KU, Turnbull DH, Joyner AL, Henkelman RM, et al.

Genetic effects on cerebellar structure across mouse models of autism using a

magnetic resonance imaging atlas. Autism Res: Off J Int Soc Autism Res.

2014;7:124–37.

24. Ullmann JF, Watson C, Janke AL, Kurniawan ND, Reutens DC. A segmentation

protocol and MRI atlas of the C57BL/6J mouse neocortex. NeuroImage.

2013;78:196–203.

25. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional

neuroimaging using the false discovery rate. NeuroImage. 2002;15:870–8.

26. Baust C, Gagnier L, Baillie GJ, Harris MJ, Juriloff DM, Mager DL. Structure and

expression of mobile ETnII retroelements and their coding-competent MusD

relatives in the mouse. J Virol. 2003;77:11448–58.

27. Vitullo P, Sciamanna I, Baiocchi M, Sinibaldi-Vallebona P, Spadafora C. LINE-1

retrotransposon copies are amplified during murine early embryo development.

Mol Reprod Dev. 2012;79:118–27.

28. Scattoni ML, Gandhy SU, Ricceri L, Crawley JN. Unusual repertoire of vocalizations

in the BTBR T+tf/J mouse model of autism. PloS One. 2008;3:e3067.

29. Takao K, Tanda K, Nakamura K, Kasahara J, Nakao K, Katsuki M, et al. Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV

knockout mice. PloS One. 2010;5:e9460.

30. Yao I, Takao K, Miyakawa T, Ito S, Setou M. Synaptic E3 ligase SCRAPPER in

contextual fear conditioning: extensive behavioral phenotyping of Scrapper

heterozygote and overexpressing mutant mice. PloS One. 2011;6:e17317.

31. Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, et al.

Agenesis of the corpus callosum: genetic, developmental and functional aspects

of connectivity. Nat Rev Neurosci. 2007;8:287–99.

32. Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, et al. Local

and long-range functional connectivity is reduced in concert in autism spectrum

disorders. Proc Natl Acad Sci USA 2013;110:3107–12.

33. Paul LK, Corsello C, Kennedy DP, Adolphs R. Agenesis of the corpus callosum and

autism: a comprehensive comparison. Brain: J Neurol. 2014;137:1813–29.

34. Yang M, Clarke AM, Crawley JN. Postnatal lesion evidence against a primary

role for the corpus callosum in mouse sociability. Eur J Neurosci.

2009;29:1663–77.

35. Stott D, Kispert A, Herrmann BG. Rescue of the tail defect of Brachyury mice.

Genes Dev. 1993;7:197–203.

36. Ellegood J, Babineau BA, Henkelman RM, Lerch JP, Crawley JN. Neuroanatomical

analysis of the BTBR mouse model of autism using magnetic resonance imaging

and diffusion tensor imaging. NeuroImage. 2013;70:288–300.

37. Ellegood J, Anagnostou E, Babineau BA, Crawley JN, Lin L, Genestine M, et al.

Clustering autism: using neuroanatomical differences in 26 mouse models to

gain insight into the heterogeneity. Mol Psychiatry. 2015;20:118–25.

Molecular Psychiatry

C.-W. Lin et al.

13

38. Morcom L, Edwards TJ, Rider E, Jones-Davis D, Lim JW, Chen KS, et al. DRAXIN

regulates interhemispheric fissure remodelling to influence the extent of corpus

callosum formation. eLife. 2021;10:e61618.

39. Miura I, Kikkawa Y, Yasuda SP, Shinogi A, Usuda D, Kumar V, et al. Characterization of single nucleotide polymorphisms for a forward genetics approach

using genetic crosses in C57BL/6 and BALB/c substrains of mice. Exp Anim.

2022;71:240–51.

40. Zhang C, Clough SJ, Adamah-Biassi EB, Sveinsson MH, Hutchinson AJ, Miura I,

et al. Impact of endogenous melatonin on rhythmic behaviors, reproduction, and

survival revealed in melatonin-proficient C57BL/6J congenic mice. J Pineal Res.

2021;71:e12748.

41. Petkov PM, Graber JH, Churchill GA, DiPetrillo K, King BL, Paigen K. Evidence of a

large-scale functional organization of mammalian chromosomes. PLoS Genet.

2005;1:e33.

42. Petkov PM, Ding Y, Cassell MA, Zhang W, Wagner G, Sargent EE, et al. An efficient

SNP system for mouse genome scanning and elucidating strain relationships.

Genome Res. 2004;14:1806–11.

43. Sultana T, Zamborlini A, Cristofari G, Lesage P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet.

2017;18:292–308.

44. Cutler G, Kassner PD. Copy number variation in the mouse genome: implications

for the mouse as a model organism for human disease. Cytogenet Genome Res.

2008;123:297–306.

45. McCarthy EM, McDonald JF. Long terminal repeat retrotransposons of Mus

musculus. Genome Biol. 2004;5:R14.

46. Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural

variation and disease. Annu Rev Genom Hum Genet. 2011;12:187–215.

47. Campbell IM, Gambin T, Dittwald P, Beck CR, Shuvarikov A, Hixson P, et al. Human

endogenous retroviral elements promote genome instability via non-allelic

homologous recombination. BMC Biol. 2014;12:74.

48. Stocking C, Kozak CA. Murine endogenous retroviruses. Cell Mol Life Sci.

2008;65:3383–98.

49. Cipriani C, Ricceri L, Matteucci C, De Felice A, Tartaglione AM, Argaw-Denboba A,

et al. High expression of endogenous retroviruses from intrauterine life to

adulthood in two mouse models of autism spectrum disorders. Sci Rep.

2018;8:629.

50. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation

of the genome. Nat Rev Genet. 2007;8:272–85.

51. Kalish BT, Kim E, Finander B, Duffy EE, Kim H, Gilman CK, et al. Maternal immune

activation in mice disrupts proteostasis in the fetal brain. Nat Neurosci.

2021;24:204–13.

52. Schoof M, Wang L, Cogan JZ, Lawrence RE, Boone M, Wuerth JD, et al. Viral

evasion of the integrated stress response through antagonism of eIF2-P binding

to eIF2B. Nat Commun. 2021;12:7103.

53. Li S. Regulation of ribosomal proteins on viral infection. Cells. 2019;8:508.

54. Goke J, Lu X, Chan YS, Ng HH, Ly LH, Sachs F, et al. Dynamic transcription of

distinct classes of endogenous retroviral elements marks specific populations of

early human embryonic cells. Cell Stem Cell. 2015;16:135–41.

55. Cullen H, Schorn AJ. Endogenous retroviruses walk a fine line between priming

and silencing. Viruses. 2020;12:792.

56. Greco A, Laurent AM, Madjar JJ. Repression of beta-actin synthesis and persistence of ribosomal protein synthesis after infection of HeLa cells by herpes

simplex virus type 1 infection are under translational control. Mol Gen Genet.

1997;256:320–7.

57. Simonin D, Diaz JJ, Masse T, Madjar JJ. Persistence of ribosomal protein synthesis

after infection of HeLa cells by herpes simplex virus type 1. J Gen Virol.

1997;78:435–43.

58. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI

GEO: archive for functional genomics data sets-update. Nucleic Acids Res.

2013;41:D991–995.

59. Laletina E, Graifer D, Malygin A, Ivanov A, Shatsky I, Karpova G. Proteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the

human 40S ribosomal subunit. Nucleic Acids Res. 2006;34:2027–36.

60. Majzoub K, Hafirassou ML, Meignin C, Goto A, Marzi S, Fedorova A, et al. RACK1

controls IRES-mediated translation of viruses. Cell. 2014;159:1086–95.

61. McKinney C, Zavadil J, Bianco C, Shiflett L, Brown S, Mohr I. Global reprogramming of the cellular translational landscape facilitates cytomegalovirus replication. Cell Rep. 2014;6:9–17.

62. Bushell M, Sarnow P. Hijacking the translation apparatus by RNA viruses. J Cell

Biol. 2002;158:395–9.

63. Rabouw HH, Visser LJ, Passchier TC, Langereis MA, Liu F, Giansanti P, et al.

Inhibition of the integrated stress response by viral proteins that block p-eIF2eIF2B association. Nat Microbiol. 2020;5:1361–73.

64. Geis FK, Goff SP. Silencing and transcriptional regulation of endogenous retroviruses: an overview. Viruses. 2020;12:884.

Molecular Psychiatry

65. Yang BX, El Farran CA, Guo HC, Yu T, Fang HT, Wang HF, et al. Systematic

identification of factors for provirus silencing in embryonic stem cells. Cell.

2015;163:230–45.

66. Shinmyo Y, Asrafuzzaman Riyadh M, Ahmed G, Bin Naser I, Hossain M, Takebayashi H, et al. Draxin from neocortical neurons controls the guidance of thalamocortical projections into the neocortex. Nat Commun. 2015;6:10232.

67. Arriaga G, Jarvis ED. Mouse vocal communication system: are ultrasounds learned

or innate? Brain Lang. 2013;124:96–116.

68. Koike H, Arguello PA, Kvajo M, Karayiorgou M, Gogos JA. Disc1 is mutated in the

129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci

USA 2006;103:3693–7.

69. Williams DL, Goldstein G, Minshew NJ. Impaired memory for faces and social

scenes in autism: clinical implications of memory dysfunction. Arch Clin Neuropsychol. 2005;20:1–15.

70. Meyza KZ, Blanchard DC. The BTBR mouse model of idiopathic autism—current

view on mechanisms. Neurosci Biobehav Rev. 2017;76:99–110.

71. Kamp C, Hirschmann P, Voss H, Huellen K, Vogt PH. Two long homologous

retroviral sequence blocks in proximal Yq11 cause AZFa microdeletions as a

result of intrachromosomal recombination events. Hum Mol Genet.

2000;9:2563–72.

72. Sun C, Skaletsky H, Rozen S, Gromoll J, Nieschlag E, Oates R, et al. Deletion of

azoospermia factor a (AZFa) region of human Y chromosome caused by

recombination between HERV15 proviruses. Hum Mol Genet. 2000;9:2291–6.

73. Rosenfeld JA, Lacassie Y, El-Khechen D, Escobar LF, Reggin J, Heuer C, et al. New

cases and refinement of the critical region in the 1q41q42 microdeletion syndrome. Eur J Med Genet. 2011;54:42–9.

74. Sanchez-Valle A, Wang X, Potocki L, Xia Z, Kang SH, Carlin ME, et al. HERVmediated genomic rearrangement of EYA1 in an individual with branchio-otorenal syndrome. Am J Med Genet Part A. 2010;152A:2854–60.

75. Chen X, Wang J, Mitchell E, Guo J, Wang L, Zhang Y, et al. Recurrent 8q13.2-13.3

microdeletions associated with branchio-oto-renal syndrome are mediated by

human endogenous retroviral (HERV) sequence blocks. BMC Med Genet.

2014;15:90.

76. Hermetz KE, Surti U, Cody JD, Rudd MK. A recurrent translocation is mediated by

homologous recombination between HERV-H elements. Mol Cytogenet. 2012;5:6.

77. Shuvarikov A, Campbell IM, Dittwald P, Neill NJ, Bialer MG, Moore C, et al.

Recurrent HERV-H-mediated 3q13.2-q13.31 deletions cause a syndrome of

hypotonia and motor, language, and cognitive delays. Hum Mutat.

2013;34:1415–23.

78. Quintela I, Gomez-Guerrero L, Fernandez-Prieto M, Resches M, Barros F, Carracedo A. Female patient with autistic disorder, intellectual disability, and comorbid anxiety disorder: Expanding the phenotype associated with the recurrent

3q13.2-q13.31 microdeletion. Am J Med Genet Part A. 2015;167A:3121–9.

79. Balestrieri E, Arpino C, Matteucci C, Sorrentino R, Pica F, Alessandrelli R, et al.

HERVs expression in autism spectrum disorders. PloS One. 2012;7:e48831.

80. Tovo PA, Davico C, Marcotulli D, Vitiello B, Dapra V, Calvi C, et al. Enhanced

expression of human endogenous retroviruses, TRIM28 and SETDB1 in autism

spectrum disorder. Int J Mol Sci. 2022;23:5964.

81. Tirosh O, Cohen Y, Shitrit A, Shani O, Le-Trilling VT, Trilling M, et al. The transcription and translation landscapes during human cytomegalovirus infection

reveal novel host-pathogen interactions. PLoS Pathog. 2015;11:e1005288.

82. Chuong EB, Rumi MA, Soares MJ, Baker JC. Endogenous retroviruses function as

species-specific enhancer elements in the placenta. Nat Genet. 2013;45:325–9.

83. Wang J, Xie G, Singh M, Ghanbarian AT, Rasko T, Szvetnik A, et al. Primate-specific

endogenous retrovirus-driven transcription defines naive-like stem cells. Nature.

2014;516:405–9.

84. Cohen CJ, Lock WM, Mager DL. Endogenous retroviral LTRs as promoters for

human genes: a critical assessment. Gene. 2009;448:105–14.

85. Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements:

from conflicts to benefits. Nat Rev Genet. 2017;18:71–86.

86. Kassiotis G. Endogenous retroviruses and the development of cancer. J Immunol.

2014;192:1343–9.

87. Sankowski R, Strohl JJ, Huerta TS, Nasiri E, Mazzarello AN, D’Abramo C, et al.

Endogenous retroviruses are associated with hippocampus-based memory

impairment. Proc Natl Acad Sci USA 2019;116:25982–90.

88. Kury P, Nath A, Creange A, Dolei A, Marche P, Gold J, et al. Human endogenous

retroviruses in neurological diseases. Trends Mol Med. 2018;24:379–94.

ACKNOWLEDGEMENTS

We thank all technical staff of Takumi laboratory for their assistance. We are grateful

to the Support Unit for Bio-Material Analysis, RIKEN CBS Research Resources Division,

for array CGH. C-WL was supported by fellowships from the Japan Society for the

Promotion of Science (JSPS) and the Tokyo Biochemical Research Foundation (TBRF).

This work was in part supported by KAKENHI (15F15105, 16H06316, 16H06463,

C.-W. Lin et al.

14

19K16529, 21H00202, 21H04813, 21K19351) from JSPS and the Ministry of Education,

Culture, Sports, Science, and Technology, Japan Agency for Medical Research and

Development (AMED) under Grant Number JP21wm0425011, Japan Science and

Technology Agency (JST) under Grant Number JPMJMS2299, Intramural Research

Grant (30-9) for Neurological and Psychiatric Disorders of NCNP, the Takeda Science

Foundation, Smoking Research Foundation, TBRF, Taiju Life Social Welfare Foundation, The Naito Foundation, and The Tokumori Yasumoto Memorial Trust for

Researches on Tuberous Sclerosis Complex and Related Rare Neurological Diseases.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41380-023-01999-z.

Correspondence and requests for materials should be addressed to Toru Takumi.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

AUTHOR CONTRIBUTIONS

C-WL conceived the idea of this study. C.-W.L. performed or was involved in all

experiments. MK, KA, K Takeshita, and KH performed 16S rRNA metagenomic

sequencing. The anatomical MRI was performed and analyzed by JB and JPL. Wholegenome SNP scanning was performed by IM and SW. C-WL wrote the paper and TJM

provided suggestions for the logic flow of this manuscript, with editing provided by

TJM, K Tamada, and TT.

FUNDING

Open access funding provided by Kobe University.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://

creativecommons.org/licenses/by/4.0/.

COMPETING INTERESTS

The authors declare no competing interests.

© The Author(s) 2023

Molecular Psychiatry

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る