リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「An Overview of Genomic Approaches for Characterizing the Genetic Architecture of Growth Traits in Chickens」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

An Overview of Genomic Approaches for Characterizing the Genetic Architecture of Growth Traits in Chickens

MANJULA, Prabuddha CHO, Sunghyun SEO, Dongwon YAMAUCHI, Nobuhiko 山内, 伸彦 ヤマウチ, ノブヒコ LEE, Jun Heon 九州大学

2020.02

概要

The genomic approach applied in chicken breeding program has become powerful strategy to develop the poultry breeding industry. Over the past several decades, there has been a significant increase in applied studies about animal breeding and selection, leading to an impressive understanding of the economi- cally important quantitative traits in livestock. Particularly, growth traits have been focused due to their high relevance to animal production. In this study, we reviewed most frequently applied genomic approaches to understanding the comprehensive architecture of growth traits in chickens. With the advancement of molecular techniques, candidate gene study, DNA marker technology emerged as finer tools for assessing the genetic variability. However, much clear resolution for understanding the quantitative traits were investigating through quantitative trait loci (QTL) mapping, expression quantitative trait loci (eQTL) mapping. Invent of Single nucleotide polymorphism marker led to develop high–density SNP array and application in Genome–wide association studies (GWAS) has become more powerful genetic tool. But, epigenetic regulation of growth traits in livestock; differentially methylation gene and their expression, microRNA (miRNA) and messenger RNA (mRNA) profiles, which has significantly influenced growth and body composition, thereby, reveals the another dimension of these traits. Near Future, application of, RNA sequencing, proteomics, nutrigenomics and endophenotypes to reveals the complexity of these polygenic traits may be more important for generating further hypotheses about the overall action on complex traits. Therefore, we discussed the experimental results of recent studies describing a black box of growth traits, which reveals the several important mechanisms, genes and genome–wide genetic variations responsible for growth traits in chicken.

参考文献

Abasht, B., J. C. M. Dekkers, and S. J. Lamont 2006 Review of quantitative trait loci identified in the chicken. Poult. Sci., 85: 2079–2096

Abdalhag, M. A., T. Li, L. Duan, T. Zhang, G. Zhang, J. Wang, Y. Wang 2016 Association analysis of IGF–I gene expression with growth and reproductive traits in jinghai yellow chickens. Genet. Mol. Res., 15: gmr15049205

Abdalhag, M. A., T. Zhang, Q. C. Fan, X. Q. Zhang, G. X. Zhang, J. Y. Wang, Y Wei, Y. J. Wang 2015 Single nucleotide polymor-phisms associated with growth traits in Jinghai yellow chickens. Genet. Mol. Res., 14: 16169–77

Ahsan, M. 2010 Candidate genes and bioinformatics analysis of biological pathways for epistatic regulation of growth in chicken. Thesis, Uppsala University. Sweden. pp.2–27

Ahsan, M., X. Li, A. E. Lundberg, M. Kierczak, P. B. Siegel, Ö. Carlborg, S. Marklund 2013 Identification of candidate genes and mutations in QTL regions for chicken growth using bioinfor- matic analysis of NGS and SNP–chip data. Front. Genet., 4: 226

Airey, J. A., T. J. Deerinck, M. H. Ellisman, L. J. Houenou, A. Ivanenko, J. L. Kenyon, D. D. Mckemy and J. L. Sutko 1993 Crooked neck dwarf (cn) mutant chicken skeletal muscle cells in low density primary cultures fail to express normal ryanodine receptor and exhibit a partial mutant phenotype. Development Dynamic., 197: 189–202

Ali, A., K. Javed, A. Ali, M. Akram, M. Dawood, A. H. Saleem 2016 Polymorphism of insulin–like growth factor–1 gene and its asso- ciation with growth rate in desi chicken of Pakistan. J. Anim. Plant Sci., 26: 858–861

Almasy, L., and J. Blangero 1998 Multipoint Quantitative–Trait Linkage Analysis in General Pedigrees. Am. J. Hum. Genet., 62: 1198–211

Almasy, L., and J. Blangero 2010 Variance component methods for analysis of complex phenotypes. Cold Spring Harb. Protoc., 5: pdb.top77

Ambo, M., A. S. Moura, M. C. Ledur, L. F. Pinto, E. E. Baron, D. C. Ruy, K. Nones, R. L. Campos, C. Boschiero, D. W. Burt, L. L. Coutinho 2009 Quantitative trait loci for performance traits in a broiler x layer cross. Anim. Genet., 40: 200–208

Asins, M. J. 2003 Present and future of quantitative trait locus analysis in plant breeding. Plant Breed, 121: 281–291

Bacon, L. D., E. J. Smith, L. B. Crittenden and G. B. Havenstein 1988 Association of the slow–feathering (K) and an endoge- nous viral (ev21) gene of the 2 chromosome of chickens. Poult. Sci., 67: 191–197

Bahmanimehr, A. 2012 Inheritance of Important Economic Traits in Chickens Under Short Term Selection. Food and agricul- ture organization of the United Nations, 4: 109–112

Barsh, G. S., G. P. Copenhaver, G. Gibson, S. M. Williams 2012 Guidelines for genome–wide association studies. PLoS Genetics, 8: e1002812

Beek, S van der., J. A. M. Arendonk van 1996 Marker–assisted selection in an outbred poultry breeding nucleus. Animal Sci., 62: 171–180

Besnier, F., P. Wahlberg, L. Rönnegård, W. Ek, L. Andersson, P. B. Siegel, O. Carlborg 2011 Fine mapping and replication of QTL in outbred chicken advanced inter–cross lines. Genet. Sel. Evol., 43

Bitgood, J. J, and R. G. Jr. Somes 1993 Gene map of the chicken (Gallus gallus) In: “GeneticMaps”, 6th edition, ed. by S. O’Brien, Cold Spring Harbor Laboratory Press., New York, pp. 4333–4342

Bhattacharya, T. K., R. N. Chatterjee, K. Dushyanth, C. Paswan, R. Shukla, M. Shanmugam 2015 Polymorphism and expression of insulin-like growth factor 1 (IGF1) gene and its association with growth traits in chicken. British Poult. Sci., 56: 398–407

Blangero, J., J. T. Williams, L. Almasy 2001 Variance component methods for detecting complex trait loci. Adv. Genet., 42: 151– 181

Brandt, M., M. Ahsan, C. F. Honaker, P. B. Siegel, Ö. Carlborg 2017 Imputation–based fine–mapping suggests that most QTL in an outbred chicken advanced inter–cross body weight line are due to multiple, linked loci. G3 Genes Genom. Genet., 7: 119– 128

Broman, K.W 2001 Review of statistical methods for QTL map- ping in experimental crosses Broman: QTL mapping. Lab Animal (NY)., 30: 44–52

Bush, W. S., and J. H. Moore 2012 Genome–wide association studies. PLoS Comput. Biol., 8: e1002822

Cabrera, C. P., I. C. Dunn, M. Fell, P. W. Wilson, D. W. Burt, D. Waddington, R. Talbot, P. M. Hocking, A. Law, S. Knott, C. S. Haley, D. J. de Koning 2012 Complex traits analysis of chicken growth using targeted genetical genomics. Animal. Genet., 43: 163–71

Carlborg, Ö., L. Andersson, and B. Kinghorn 2000 The use of a genetic algorithm for simultaneous mapping of multiple inter- acting quantitative trait loci. Genetics, 155: 2003–2010

Carlborg, Ö., S. Kerje, K. Schütz, L. Jacobsson, P. Jensen, and L. Andersson 2003 A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome. Res., 13: 413–21

Carlborg, Ö. and C. S. Haley 2004 Epistasis: Too often neglected in complex trait studies? Nat. Rev. Genet., 5: 618–625

Carlborg, Ö., P. M. Hocking, D.W. Burt, C. S. Haley 2004 Simultaneous mapping of epistatic QTL in chickens reveals clus- ters of QTL pairs with similar genetic effects on growth. Genet. Res., 83: 197–209

Carlborg, Ö., L. Jacobsson, P. Åhgren, P. Siegel, and L. Andersson 2006 Epistasis and the release of genetic variation during long– term selection. Nature Genetics, 38: 418–420

Cahyadi, M., D. Seo, S. Jin, N. Choi, H.B. Park, K.N. Heo, B.S. Kang, C. Jo, J. H. Lee 2013 Association of SNPs in ODC and PRDM16 with body weight traits in Korean native chicken. Korean J. Poult. Sci., 40: 157–162

Cahyadi, M., D. Seo, N. Choi, S. Jin, D. Maharani, K. N. Heo, B. S. Kang, C. Jo, J. H. Lee 2013 FABP3 and FABP4 genes are the potential candidates for body weights in Korean native chicken. Korean J. Poult. Sci., 40: 91–96

Cahyadi, M., H. B. Park, D. W. Seo, S. Jin, N. Choi, K. N. Heo, B. S. Kang, C. Jo, J. H. Lee 2016 Variance component quantitative trait locus analysis for body weight traits in purebred Korean native chicken. Asian–Australasian J. Anim. Sci., 29: 43–50

Chase, K., F. R. Adler, and K. G. Lark 1997 Epistat: A computer program for identifying and testing interactions between pairs of quantitative trait loci. Theor. Appl. Genet., 94: 724–730

Collard, B. C. Y., M. Z. Z. Jahufer, J. B. Brouwer, and E. C. K. Pang 2005 An introduction to markers, quantitative trait loci (QTL) mapping and marker–assisted selection for crop improvement: The basic concepts. Euphytica, 142: 169–196

David, S. A., M. Mersch, S. Foissac, A. Collin, F. Pitel, V. Coustham 2017 Genome–Wide Epigenetic Studies in Chicken: A Review. Epigenomes, 1: 20

Dou, T., M. Shen, M. Ma, L. Qu, Y. Li, Y. Hu, J. Lu, J. Guo, X. Wang, K. Wang 2018 Genetic architecture and candidate genes detected for chicken internal organ weight with a 600 K SNP array. Asian–Australasian J. Anim. Sci., 73: 1642–50

Dozier, W. A., M. T. Kidd, and A. Corzo 2008 Dietary amino acid responses of broiler chickens. J. Appl. Poultry Res., 17: 157– 167

Dunnington, E. A. and P. B. Siegel 1996 Long–term divergent selection for eight–week body weight in White Plymouth Rock Chickens. Poult. Sci., 75: 1168–79

Dushyanth, K., T. K. Bhattacharya, C. Paswan, T. Sitaramamma, R. Shukla, R. N. Chatterje 2016 Structural variation in FSTN exon 3 gene and its association with growth traits in chicken. J. Anim. Res., 6: 471

Elfick, D. 2012 A brief history of broiler selection: how chicken became a global food phenomenon in 50 years. Aviagen International

Emmerson, D. A. 1997 Commercial approaches to genetic selec- tion for growth and feed conversion in domestic poultry, Poult. Sci., 76: 1121–1125

Fan, W. L., C. S. Ng, C. F. Chen, M.Y. J. Lu, Y. H. Chen, C. J. Liu, S. M. Wu, C. K. Chen, J. J. Chen, C. T. Mao, Y. T. Lai, W. S. Lo, W. H. Chang, W. H. Li 2013 Genome–wide patterns of genetic variation in two domestic chickens. Genome Biol. Evol., 5: 1376–92

Fulton, J.E 2012 Genomic selection for poultry breeding. Animal Frontier, 2: 30–36

Gao, Y., C.G. Feng, C. Song, Z.Q. Du, X. M. Deng, N. Li, X. X. Hu 2011 Mapping quantitative trait loci affecting chicken body size traits via genome scanning. Animal Genet., 42: 670–674

Gonzales, N. M., A. A. Palmer 2014 Fine–mapping QTLs in advanced inter–cross lines and other outbred populations. Mamm. Genome., 25: 271–92

Gu, X., C. Feng, L. Ma, C. Song, Y. Wang, Y. Da, H.LI, K. Chen, S. Ye, C. Ge, X. Hu, N. Li 2011 Genome–wide association study of body weight in chicken F2 resource population. PLoS One, 6: e21872

Han, R., Z. Li, Y. Guo, X. Wang 2018 Detection and Utility of Genetic Variation in Chinese Local Chicken Breeds. In “Application of Genetics and Genomics in Poultry Science”, Xiaojun Liu, IntechOpen, DOI: 10.5772/intechopen.77028

Hocking, P.M. 2005 Review of QTL mapping results in chickens. Worlds’ Poultry Sci. J., 61: 215–226

Hu, Y., H. Xu, Z. Li, X. Zheng, X. Jia, Q. Nie, X. Zhang 2013 Comparison of the genome–wide DNA methylation profiles between fast–growing and slow–growing broilers. PLoS One, 8: e56411

Huang, M. B., H. Xu, S. J. Xie, H. Zhou, L. H. Qu 2011 Insulin–like growth factor–1 receptor is regulated by microRNA–133 during skeletal myogenesis. PLoS One, 6: e29173

Huang, S., Y. He, S. Ye, J. Wang, X. Yuan, H. Zhang, J. Li, X. Zhang, Z. Zhang 2018 Genome–wide association study on chicken carcass traits using sequence data imputed from SNP array. J. Appl. Genet., 59: 335–344

Jacobsson, L., H. B. Park, P. Wahlberg, R. Fredriksson, M. Perez–Enciso, P. B. Siegel, L. Andersson 2005 Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens. Genet. Res., 86: 115–25

Jin, C. F., Y. J. Chen, Z. Q. Yang, K. Shi, C. K. Chen 2015 A genome–wide association study of growth trait–related single nucleotide polymorphisms in Chinese Yancheng chickens. Genet. Mol. Res., 14: 15783–15792

Johansson, A. M., M. E. Pettersson, P. B. Siegel, Ö. Carlborg 2010 Genome–wide effects of long–term divergent selection. PLoS Genetics, 6: e1001188

Johnsson, M., R. Henriksen, A. Höglund, J. Fogelholm, P. Jensen, D. Wright 2018 Genetical genomics of growth in a chicken model. BMC Genomics, 19: 1–12

Kao, C. H., Z. B. Zeng, and R. D. Teasdale 1999 Multiple interval mapping for quantitative trait loci. Genetics, 152: 1203–1216

Kendziorski, C., P. Wang 2006 A review of statistical methods for expression quantitative trait loci mapping. Mamm. Genome., 17: 509–517

Kim, V. N., J. Han, M. C. Siomi. 2009 Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Bio., 10: 126–139

Khatri, B., D. Seo, S. Shouse, J. H. Pan, N. J. Hudson, J. K. Kim, W. Bottje, B.C.Kong 2018 MicroRNA profiling associated with muscle growth in modern broilers compared to an unselected chicken breed. BMC Genomics, 19: 683

Kong, B. W., N. Hudson, D. Seo, S. Lee, B. Khatri, K. Lassiter, D. Cook, A. Piekarski, S. Dridi, N. Anthony, W. Bottje 2017 RNA sequencing for global gene expression associated with muscle growth in a single male modern broiler line compared to a foun- dational Barred Plymouth Rock chicken line. BMC Genomics, 18: 82

Lan Anh, N. T., S. Kunhareang, M. Duangjinda 2015 Association of chicken growth hormones and insulin–like growth factor gene polymorphisms with growth performance and carcass traits in Thai broilers. Asian–Australasian J. Anim. Sci., 28: 1686– 1695

Li, H. and H. Deng 2010 Systems genetics, bioinformatics and eQTL mapping. Genetica, 138: 915–924

Li, Q., N. Li, X. Hu, J. Li, Z. Du, L. Chen, G. Yin, J. Duan, H. Zhang, Y. Zhao, J. Wang, N. Li 2011 Genome–wide mapping of DNA methylation in chicken. PLoS One, 6: e19428

Li, H., S. Wang, F. Yan, X. Liu, R. Jiang, R .Han, Z. Li, G. Li, Y. Tian, X. Kang, G. Sun 2015 Effect of polymorphism within miRNA– 1606 gene on growth and carcass traits in chicken. Gene, 566: 8–12

Lien, C. Y., M. Tixier–Boichard, S.W. Wu, W.F. Wang, C. S. Ng, C. F. Chen 2017 Detection of QTL for traits related to adaptation to sub–optimal climatic conditions in chickens. Genet. Sel. Evol., 49: 1–14

Liu, G., E.A. Dunnington, P.B. Siegel 1994 Responses to long– term divergent selection for eight–week body weight in chick- ens. Poult. Sci., 73: 1642–1650

Liu, R., Y. Sun, G. Zhao, F. Wang, D. Wu, M. Zheng, J. Chen, L. Zhang, Y. Hu, J. Wen 2013 Genome–wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing–You Chickens. PLoS One, 8: e61172

Lyu, S., D. Arends, M. K. Nassar, G. A. Brockmann 2017 Fine mapping of a distal chromosome 4 QTL affecting growth and muscle mass in a chicken advanced inter–cross line. Animal Genet., 48: 295–302

Mackay, T. F. C. 2001 Quantitative trait loci in Drosophila. Nature Reviews Genetics, 1: 11–20

Manjula, P., H. B. Park, D. Seo, N. Choi, S. Jin, S. J. Ahn, K. N. Heo, B. S. Kang, J. H. Lee 2018a Estimation of heritability and genetic correlation of body weight gain and growth curve parameters in Korean native chicken. Asian–Australasian J. Anim. Sci., 31: 26–31

Manjula, P., S. Cho, K.J. Suh, D. Seo, J.H. Lee 2018b Single nucleotide polymorphism of TBC1D1 gene association with growth traits and serum clinical–chemical traits in chicken. Korean J. Poult. Sci., 45: 291–298

Manjula, P., N. Choi, D. Seo, J.H. Lee 2018c POU class 1 home- obox 1 gene polymorphisms associated with growth traits in Korean native chicken. Asian–Australasian J. Anim. Sci., 31: 643–649

Megeney, L. A. and M. A. Rudnicki. 1995 Determination versus differentiation and the MyoD family of transcription factors. Biochem. Cell Biol., 73: 723–732

Michael, F., A.W. Festing and Nordskog 1996 Response to selec- tion for body weight and egg weight in chickens. Genetics, 55: 219–231

Moreira, G. C. M., T. F. Godoy, C. Boschiero, A. Gheyas, G. Gasparin, S. C. Andrade, M. Paduan, H. Montenegro, D. W. Burt, M. C. Ledur, L. L. Coutinho 2015 Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens. Animal Genet., 46: 141–147

Naha, B. C., A. Prasad, L. Sailo, R Chaudhary and O Prakash 2016 Concept of genome wide association studies and its progress in livestock. Int. J. Sci. Nat., 7: ISSN2229–6441

Nassar, M. K., Z. S. Goraga, G. A. Brockmann 2015 Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: IV. growth performance. Animal Genet., 46: 441–446

Narinç, D., N. Öksüz Narinç, A. Aygün 2017 Growth curve analy- ses in poultry science. Worlds’ Poultry Sci. J., 73: 395–408

Nätt, D., C.J. Rubin, D. Wright, M. Johnsson, J. Beltéky, L. Andersson, P. Jensen 2012 Heritable genome–wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genomics, 13: 59

Nie, Q., M. Lei, J. Ouyang, H. Zeng, G. Yang, X. Zhang 2005 Identification and characterization of single nucleotide polymor- phisms in 12 chicken growth–correlated genes by denaturing high performance liquid chromatography. Genet. Sel. Evol., 37: 339–60

Niknafs, S., A. Nejati–Javaremi, H. Mehrabani–Yeganeh, S. A. Fatemi 2012 Estimation of genetic parameters for body weight and egg production traits in Mazandaran native chicken. Trop. Anim. Health Pro., 44: 1437–1443

Pandey, N. K., R. P. Singh, V. K. Saxena, N. Shit, R. Singh, R. K. Sharma, K. V. H. Sastry 2013 Effect of IGF1 gene polymor- phism and expression levels on growth factors in Indian col- oured broilers. Livest. Sci., 155: 157–164

Plasterk, R.H. 2006 Micro RNAs in animal development. Cell, 124: 877–81

Patnala, R., J. Clements and J. Batra 2013 Candidate gene associ- ation studies: A comprehensive guide to useful in silico tools. BMC Genetics, 14: 39

Pértille, F., G. C. M. Moreira, R. Zanella, J. D. R. D. S. Nunes, C. Boschiero, G. A. Rovadoscki, G. B. Mourão, M. C. Ledur, L. L. Coutinho 2017 Genome–wide association study for perfor- mance traits in chickens using genotype by sequencing approach. Sci. Rep., 7: 41748

Portela, A. and M. Esteller 2010 Epigenetic modifications and human disease. Nat. Biotechnol., 28: 1057–1068

Psifidi, A., G. Banos, O. Matika, T. T. Desta, J. Bettridge, D. A. Hume, T. Dessie, R. Christley, P. Wigley, O. Hanotte, P. Kaiser 2016 Genome–wide association studies of immune, disease and production traits in indigenous chicken ecotypes. Genet. Sel. Evol., 48: 1–16

Rahman, M. M., R. Matsuda, T. Matsuda, Y. Nishiyama, K. Jozaki, K. Anann, Y. Wada 2013 Relationship between the Production Traits and three Candidate Genes in the Prolactin’s In/Del x In/ Del Population of Silky Fowl. J. Poult. Sci., 51: 138–143

Rubin, C. J., M. C. Zody, J. Eriksson, J. R. S. Meadows, E. Sherwood, M. T. Webster, L. Jiang, M. Ingman, T. Sharpe, S. Ka, F. Hallbook, F. Bensnier, O. Carlborg, B. Bed’hom, M. T. Boichard, P. Jensen, P. Sigel, K.L. Toh, L. Andersson 2010 Whole–genome resequencing reveals loci under selection during chicken domestication. Nature, 464: 587–591

Sadeghi, M., S. Niknafs, H. Moradi Shahrbabak, S. A. Fatemi 2012 Two SNP in STAT5B gene and their association with breeding value of growth and egg production traits in Mazandaran Indigenous Chicken. Livest. Sci., 147: 198–202

Saxena, V. K. and G. Kolluri 2018 Selection methods in poultry breeding: from genetics to genomics. In “Application of Genetics and Genomics in Poultry Science”, Xiaojun Liu, IntechOpen, doi: 10.5772/intechopen.77966

Seo, D.W., H. B. Park, N. Choi, S. Jin, C. K. Yoo, H. Sultana, K. N. Heo, C. Jo, J. H. Lee 2015 construction of genetic linkage map using microsatellite and snp markers in Korean Native chicken. Korean J. Poult. Sci., 42: 77–86

Sihua, J., T. H, L. Yang, Y. Tong, Xingyong, Z.G. Chen 2018 Association of polymorphisms in Pit–1 gene with growth and feed efficiency in meat–type chickens. Asian–Australas J. Anim. Sci., 31: 1685–1690

Sharmaa, A., J. S. Lee, C. G. Dang, P. Sudrajad, H. C. Kim, S. H. Yeon, H. S. Kang, S. H. Lee 2015 Stories and challenges of genome wide association studies in livestock – a review. Asian– Australas J. Anim. Sci., 28: 1371–1379

Sheng, Z., M. E. Pettersson, X. Hu, C. Luo, H. Qu, D. Shu, X.Shen, O Carlborg, N. Li 2013 Genetic dissection of growth traits in a Chinese indigenous × commercial broiler chicken cross. BMC Genomics, 14: 151

Shimomura, K., S. S. Low–Zeddies, D. P. King, T. D. L. Steeves, A. Whiteley, J. Kushla, P. D. Zemenides, A. Lin, M. H. Vitaterna, G. A. Churchill, and J. S. Takahashi 2001 Genome–wide epistatic interaction analysis reveals complex genetic determinants of cir- cadian behavior in mice. Genome. Res., 11: 959–980

Song, C., X. Gu, C. Feng, Y. Wang, Y. Gao, X. Hu, N. Li 2011 Evaluation of SNPs in the chicken HMGA2 gene as markers for body weight gain. Animal Genet., 42: 333–336

Stranger, B.E., E.A. Stahl, T. Raj 2011 Progress and promise of genome–wide association studies for human complex trait genetics. Genetics, 187: 367–383

Sun, W and Y. Hu. 2013 eQTL mapping using RNA–seq data. Statistical Biosci., 5: 198–219

Sun, G. and P. Schliekelman 2011 A genetical genomics approach to genome scans increases power for QTL mapping. Genetics, 187: 939–953

Tabor, H.K., N.J. Risch and R.M. Myers 2002 Candidate–gene approaches for studing complex genetic traits: practical consid- erations Nature reviews Genetics, 3: 391–397

Tarsani, E., A. Kranis, G. Maniatis, A. Kominakis 2018 Investigating the functional role of 1,012 candidate genes identi- fied by a Genome Wide Association Study for body weight in broilers. Proceeding of the World Congrss on Genetics applied to Livestock Production, 11: 564

Thiruvenkadan, A.K. and R. Prabakaran 2017 Recent approaches in Poultry Breeding. Approch in Poult. Dairy & Veter. Sci., 2: 1–9

Te Pas, M. F. W., O. Madsen, M. P. L. Calus, M.A. Smits 2017 The importance of endophenotypes to evaluate the relationship between genotype and external phenotype. Int. J. Mol. Sci., 18: pii E472

Telphoni, E., S. Alijani, K. Hasanpour, A. Javanmard 2018 Relationship between STAT5B candidate gene polymorphism with growth related traits and ascites index in commercial chicken line. Res. Anim. Prod., 9: 100–109

Tollefsbol, T.O. 2011 Advances in epigenetic technology. Methods Mol. Biol., 791: 1–10

Tranchevent, L. C., F. B. Capdevila, D. Nitsch, B. de Moor, P. de Causmaecker, and Y. Moreau 2011 A guide to web tools to prioritize candidate genes. Brief. Bioinform., 12: 22–32

Wang, Y., H. Y. Xu, E. R. Gilbert, X. Peng, X. L. Zhao, Y. P. Liu, Q. Zhu 2014 Detection of SNPs in the TBC1D1 gene and their association with carcass traits in chicken. Gene, 547: 288–294

Wahlberg, P., Ö. Carlborg, M. Foglio, X. Tordoir, A. C. Syvänen, M. Lathrop, I. G. Gut, P. B. Siegel, L. Andersson 2009 Genetic analysis of an F2 intercross between two chicken lines diver- gently selected for body–weight. BMC Genomics, 10: 248

Wei, Y., G. X. Zhang, T. Zhang, J. Y. Wang, Q. C. Fan, Y. Tang, F. X. Ding, L. Zhang 2016 Myf5 and MyoG gene SNPs associated with Bian chicken growth trait. Genet. Mol. Res., 15

Wen, C., X. Jiang, L. Ding, T. Wang, and Y. Zhou 2017 Effects of dietary methionine on breast muscle growth, myogenic gene expression and IGF–I signalling in fast– And slow–growing broil- ers. Sci. Rep., 7: 1924

Wolc, A. 2014 Understanding genomic selection in poultry breed- ing. Worlds’ Poultry Sci. J., 70: 309–314

Xie, L., C. Luo, C. Zhang, R. Zhang, J. Tang, Q. Nie, et al. L. Ma, X. Hu, N. Li, Y. Da, X. Zhang 2012 Genome–wide association study identified a narrow chromosome 1 region associated with chicken growth traits. PLoS One, 7: 1–9

Xu, X., R. Xu, B. Zhu, T. Yu, W. Qu, L. Lu, Q. Xu, X. Qi, X. Chen 2015 A high–density genetic map of cucumber derived from specific length amplified fragment sequencing (SLAF–seq). Front. Plant Sci., 5: 768

Yin, H., S. Zhang, E. R. Gilbert, P. B. Siegel, Q. Zhu, and E. A. Wong 2014 Expression profiles of muscle genes in postnatal skeletal muscle in lines of chickens divergently selected for high and low body weight. Poult. Sci., 93: 147–154

Yuan, Y., D. Peng, X. Gu, Y. Gong, Z. Sheng, and X. Hu 2018 Polygenic basis and variable genetic architectures contribute to the complex nature of body weight –A genome–wide study in four Chinese indigenous chicken breeds. Front. Genet., 9: 229

Yue, P., E. Melamud, and J. Moult 2006 SNPs3D: Candidate gene and SNP selection for association studies. BMC Bioinformatics, 7: 1–15

Zhang, H., Z. Wang, S. Wang, H. Li 2012 Progress of genome wide association study in domestic animals. J. Anim. Sci. Biotechnol., 3: 26

Zhang, G. X., Q. C. Fan, T. Zhang, J.Y. Wang, W. H. Wang, Q. Xue, Y. J. Wang 2015 Genome–wide association study of growth traits in the Jinghai Yellow chicken. Genet. Mol. Res., 14: 15331–15338

Zhang, K., B. H. Cheng, L. L. Yang, Z. P. Wang, H. L. Zhang, S. S. Xu, S. Z. Wang, Y. X. Wang, H. Zhang, H. Li 2017 Identification of a potential functional single nucleotide poly- morphism for fatness and growth traits in the 3’–untranslated region of the PCSK1 gene in chickens. J. Anim. Sci., 95: 4776– 4786

Zhao, Q., R. Liao, H. Sun, Z. Zhang, Q. Wang, C. Yang, X. Z. Zhang, Y.C. Pan 2018 Identifying Genetic Differences Between Dongxiang Blue–Shelled and White Leghorn Chickens Using Sequencing Data. G3 Genes Genom. Genet., 8: 469–476

Zhao, X. H., J. Y. Wang, G. X. Zhang, Y. Wei, Y. P. Gu, Y. B. Yu 2012 Single nucleotide polymorphism in the STAT5b gene is associated with body weight and reproductive traits of the Jinghai Yellow chicken. Mol. Biol. Rep., 39: 4177–4183

Zhao, X., J. Wang, G. Zhang, Y. Wei, L. Jun 2013 Polymorphisms in exons of the IGFBP–1 gene and their associations with body weight in the Jinghai Yellow chicken. Anim. Sci. Pap. Rep., 31: 55–62

Zhu, M. and S. Zhao 2007 Candidate gene identification approach: Progress and challenges. Int. J. Biol. Sci., 3: 420– 427

Zou, W. and Z. B. Zeng 2008 Statistical methods for mapping multiple QTL. Int. J. Plant Genom., 8: 286561

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る