リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the Molecular Basis of Heterosis in Arabidopsis thaliana and Vegetable Crops」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the Molecular Basis of Heterosis in Arabidopsis thaliana and Vegetable Crops

Shiraki, Saaya Fujiwara, Kazumasa Kamiya, Yoshiki Akter, Mst. A. Dennis, Elizabeth S. Fujimoto, Ryo Mehraj, Hasan 神戸大学

2023.03

概要

Heterosis is an important phenomenon for high-yield crop breeding and is utilized for breeding F₁ varieties in horticultural crops. However, its molecular mechanism has not been elucidated, and compared to cereals, heterosis is less explored at the molecular level in horticultural crops. In this review, we compiled the new genetic and epigenetic studies on heterosis in horticultural crops. Because of the difficulty of predicting the level of heterosis from the parental genetic distance, molecular approaches are being used to study its molecular basis in horticultural crops. Transcriptome analyses in vegetables have identified photosynthesis-related genes as important in heterosis. Analysis of noncoding RNAs has suggested their involvement in regulating the heterosis of vegetative and fruit tissues. Quantitative trait locus (QTL) analysis has revealed the association of heterozygosity of a specific locus or multiple loci with heterosis of vegetative and fruit tissues. A higher level of DNA methylation was noted in the heterotic F₁ of Brassica rapa leafy vegetables, while the roles of other epigenetic modifications such as histone marks have not been explored.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Darwin, C. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom, 1st ed.; John Murray: London, UK, 1876; pp. 1–482.

Shull, G.H. What is “Heterosis”? Genetics 1948, 33, 439–446. [CrossRef] [PubMed]

Crow, J.F. 90 years ago: The beginning of hybrid maize. Genetics 1998, 148, 923–928. [CrossRef] [PubMed]

Ma, G.H.; Yuan, L.P. Hybrid rice achievements, development and prospect in China. J. Integr. Agric. 2015, 14, 197–205. [CrossRef]

Wakchaure, R.; Ganguly, S.; Praveen, P.K.; Sharma, S.; Kumar, A.; Mahajan, T.; Qadri, K. Importance of heterosis in animals: A

review. Int. J. Adv. Eng. Technol. Innov. Sci. 2015, 1, 1–5.

Bruce, A.B. The mendelian theory of heredity and the augmentation of vigor. Science 1910, 32, 627–628. [CrossRef]

Jones, D.F. Dominance of linked factors as a means of accounting for heterosis. Proc. Natl. Acad. Sci. USA 1917, 3, 310–312.

[CrossRef]

Hashimoto, S.; Wake, T.; Nakamura, H.; Minamiyama, M.; Araki-Nakamura, S.; Ohmae-Shinohara, K.; Koketsu, E.; Okamura, S.;

Miura, K.; Kawaguchi, H.; et al. The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety.

Sci. Rep. 2021, 11, 4532. [CrossRef]

Busch, R.H.; Luchen, K.A.; Frohberg, R.C. F1 hybrids versus random F5 line performance and estimates of genetic effects in

spring wheat. Crop Sci. 1971, 11, 357–361. [CrossRef]

Wang, L.; Greaves, I.K.; Groszmann, M.; Wu, L.M.; Dennis, E.S.; Peacock, W.J. Hybrid mimics and hybrid vigor in Arabidopsis.

Proc. Natl. Acad. Sci. USA 2015, 112, E4959–E4967. [CrossRef]

He, Y.; Zhang, Y.; Liao, Y.; Dennis, E.S.; Peacock, W.J.; Wu, X. Rice hybrid mimics have stable yields equivalent to those of the F1

hybrid and suggest a basis for hybrid vigour. Planta 2021, 254, 51. [CrossRef]

Zhang, Y.; Ovenden, B.; He, Y.; Ye, W.; Wu, X.; Peacock, W.J.; Dennis, E.S. Hybrid vigour and hybrid mimics in Japonica rice.

Agronomy 2022, 12, 1559. [CrossRef]

Hull, F.H. Recurrent selection and overdominance. In Heterosis; Gowen, J.W., Ed.; Iowa State College Press: Ames, IA, USA, 1952;

pp. 451–473.

Krieger, U.; Lippman, Z.B.; Zamir, D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat.

Genet. 2010, 42, 459–463. [CrossRef]

Charlesworth, D.; Willis, J. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783–796. [CrossRef]

Yu, D.; Gu, X.; Zhang, S.; Dong, S.; Miao, H.; Gebretsadik, K.; Bo, K. Molecular basis of heterosis and related breeding strategies

reveal its importance in vegetable breeding. Hortic. Res. 2021, 8, 120. [CrossRef]

Guo, T.; Yang, N.; Tong, H.; Pan, Q.; Yang, X.; Tang, J.; Wang, J.; Li, J.; Yan, J. Genetic basis of grain yield heterosis in an

“immortalized F2 ” maize population. Theor. Appl. Genet. 2014, 127, 2149–2158. [CrossRef]

Huang, X.; Yang, S.; Gong, J.; Zhao, Q.; Feng, Q.; Zhan, Q.; Zhao, Y.; Li, W.; Cheng, B.; Xia, J.; et al. Genomic architecture of

heterosis for yield traits in rice. Nature 2016, 537, 629–633. [CrossRef]

Fujimoto, R.; Uezono, K.; Ishikura, S.; Osabe, K.; Peacock, W.J.; Dennis, E.S. Recent research on the mechanism of heterosis is

important for crop and vegetable breeding systems. Breed. Sci. 2018, 68, 145–158. [CrossRef]

Fortuny, A.P.; Bueno, R.A.; Pereira da Costa, J.H.; Zanor, M.I.; Rodríguez, G.R. Tomato fruit quality traits and metabolite content

are affected by reciprocal crosses and heterosis. J. Exp. Bot. 2021, 72, 5407–5425. [CrossRef]

Kaushik, P.; Plazas, M.; Prohens, J.; Vilanova, S.; Gramazio, P. Diallel genetic analysis for multiple traits in eggplant and assessment

of genetic distances for predicting hybrids performance. PLoS ONE 2018, 13, e0199943. [CrossRef]

Yue, L.; Zhang, S.; Zhang, L.; Liu, Y.; Cheng, F.; Li, G.; Zhang, S.; Zhang, H.; Sun, R.; Li, F. Heterotic prediction of hybrid

performance based on genome-wide SNP markers and the phenotype of parental inbred lines in heading Chinese cabbage

(Brassica rapa L. ssp. pekinensis). Sci. Hortic. 2022, 296, 110907. [CrossRef]

Kawamura, K.; Kawanabe, T.; Shimizu, M.; Nagano, A.J.; Saeki, N.; Okazaki, K.; Kaji, M.; Dennis, E.S.; Osabe, K.; Fujimoto, R.

Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis. Plant Gene 2016, 5, 1–7. [CrossRef]

Chen, Z.J. Genomic and epigenetic insights into the molecular bases of heterosis. Nat. Rev. Genet. 2013, 14, 471–482. [CrossRef]

[PubMed]

Lippman, Z.B.; Zamir, D. Heterosis: Revisiting the magic. Trends Genet. 2007, 23, 60–66. [CrossRef]

Groszmann, M.; Greaves, I.K.; Fujimoto, R.; Peacock, W.J.; Dennis, E.S. The role of epigenetics in hybrid vigour. Trends Genet.

2013, 29, 684–690. [CrossRef] [PubMed]

Santamaria, P.; Signore, A. How has the consistency of the common catalogue of varieties of vegetable species changed in the last

ten years? Sci. Hortic. 2021, 277, 109805. [CrossRef]

Yamagishi, H.; Bhat, S.R. Cytoplasmic male sterility in Brassicaceae crops. Breed. Sci. 2014, 64, 38–47. [CrossRef]

Fujimoto, R.; Nishio, T. Self-Incompatibility. Adv. Bot. Res. 2007, 45, 139–154.

Chen, L.; Liu, Y.G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [CrossRef]

Singh, S.; Dey, S.S.; Bhatia, R.; Kumar, R.; Behera, T.K. Current understanding of male sterility systems in vegetable Brassicas and

their exploitation in hybrid breeding. Plant Reprod. 2019, 32, 231–256. [CrossRef]

Horticulturae 2023, 9, 366

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

14 of 18

Seymour, D.K.; Chae, E.; Grimm, D.G.; Pizarro, C.M.; Habring-Müller, A.; Vasseur, F.; Rakitsch, B.; Borgwardt, K.M.; Koenig, D.;

Weigel, D. Genetic architecture of nonadditive inheritance in Arabidopsis thaliana hybrids. Proc. Natl. Acad. Sci. USA 2016, 113,

E7317–E7326. [CrossRef]

Yang, M.; Wang, X.; Ren, D.; Huang, H.; Xu, M.; He, G.; Deng, X.W. Genomic architecture of biomass heterosis in Arabidopsis.

Proc. Natl. Acad. Sci. USA 2017, 114, 8101–8106. [CrossRef]

Kusterer, B.; Piepho, H.P.; Utz, H.F.; Schön, C.C.; Muminovic, J.; Meyer, R.C.; Altmann, T.; Melchinger, A.E. Heterosis for

biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant

inbred lines. Genetics 2007, 177, 1839–1850. [CrossRef]

Meyer, R.C.; Kusterer, B.; Lisec, J.; Steinfath, M.; Becher, M.; Scharr, H.; Melchinger, A.E.; Selbig, J.; Schurr, U.; Willmitzer, L.; et al.

QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor. Appl. Genet. 2010, 120, 227–237. [CrossRef]

Lisec, J.; Steinfath, M.; Meyer, R.C.; Selbig, J.; Melchinger, A.E.; Willmitzer, L.; Altmann, T. Identification of heterotic metabolite

QTL in Arabidopsis thaliana RIL and IL populations. Plant J. 2009, 59, 777–788. [CrossRef]

Andorf, S.; Meyer, R.C.; Selbig, J.; Altmann, T.; Repsilber, D. Integration of a systems biological network analysis and QTL results

for biomass heterosis in Arabidopsis thaliana. PLoS ONE 2012, 7, e49951. [CrossRef]

Fujimoto, R.; Taylor, J.M.; Shirasawa, S.; Peacock, W.J.; Dennis, E.D. Heterosis of Arabidopsis hybrids between C24 and Col is

associated with increased photosynthesis capacity. Proc. Natl. Acad. Sci. USA 2012, 109, 7109–7114. [CrossRef]

Saeki, N.; Kawanabe, T.; Ying, H.; Shimizu, M.; Kojima, M.; Abe, H.; Okazaki, K.; Kaji, M.; Taylor, J.M.; Sakakibara, H.; et al.

Molecular and cellular characteristics of hybrid vigour in a commercial hybrid of Chinese cabbage. BMC Plant Biol. 2016, 16, 45.

[CrossRef]

Ni, Z.; Kim, E.D.; Ha, M.; Lackey, E.; Liu, J.; Zhang, Y.; Sun, Q.; Chen, Z.J. Altered circadian rhythms regulate growth vigour in

hybrids and allopolyploids. Nature 2009, 457, 327–331. [CrossRef]

Shen, H.; He, H.; Li, J.; Chen, W.; Wang, X.; Guo, L.; Peng, Z.; He, G.; Zhong, S.; Qi, Y.; et al. Genome-wide analysis of DNA

methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 2012, 24, 875–892.

[CrossRef]

Groszmann, M.; Gonzalez-Bayon, R.; Lyons, R.L.; Greaves, I.K.; Kazan, K.; Peacock, W.J.; Dennis, E.S. Hormone-regulated defense

and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. Proc. Natl. Acad. Sci. USA 2015, 112, E6397–E6406.

[CrossRef]

Alonso-Peral, M.M.; Trigueros, M.; Sherman, B.; Ying, H.; Taylor, J.M.; Peacock, W.J.; Dennis, E.S. Patterns of gene expression in

developing embryos of Arabidopsis hybrids. Plant J. 2017, 89, 927–939. [CrossRef] [PubMed]

Wang, L.; Wu, L.M.; Greaves, I.K.; Zhu, A.; Dennis, E.S.; Peacock, W.J. PIF4-controlled auxin pathway contributes to hybrid vigor

in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2017, 114, E3555–E3562. [CrossRef] [PubMed]

Gonzalez-Bayon, R.; Shen, Y.; Groszmann, M.; Zhu, A.; Wang, A.; Allu, A.D.; Dennis, E.S.; Peacock, W.J.; Greaves, I.K. Senescence

and defense pathways contribute to heterosis. Plant Physiol. 2019, 180, 240–252. [CrossRef] [PubMed]

Zhu, A.; Greaves, I.K.; Liu, P.C.; Wu, L.; Dennis, E.S.; Peacock, W.J. Early changes of gene activity in developing seedlings of

Arabidopsis hybrids relative to parents may contribute to hybrid vigour. Plant J. 2016, 88, 597–607. [CrossRef]

Meyer, R.C.; Witucka-Wall, H.; Becher, M.; Blacha, A.; Boudichevskaia, A.; Dörmann, P.; Fiehn, O.; Friedel, S.; von Korff, M.; Lisec,

J.; et al. Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression

and enhanced metabolic activity in the hybrids. Plant J. 2012, 71, 669–683. [CrossRef]

Liu, W.; He, G.; Deng, X.W. Biological pathway expression complementation contributes to biomass heterosis in Arabidopsis.

Proc. Natl. Acad. Sci. USA 2021, 118, e2023278118. [CrossRef]

Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirasch,

J.; Amariglio, N.; Kupiec, M.; et al. Topology of the human and mouse m6 A RNA methylomes revealed by m6 A-seq. Nature 2012,

485, 201–206. [CrossRef]

Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive analysis of mRNA methylation

reveals enrichment in 3’ UTRs and near stop codons. Cell 2012, 149, 1635–1646. [CrossRef]

Yue, H.; Nie, X.; Yan, Z.; Weining, S. N6-methyladenosine regulatory machinery in plants: Composition, function and evolution.

Plant Biotechnol. J. 2019, 17, 1194–1208. [CrossRef]

Xu, Z.; Shi, X.; Bao, M.; Song, X.; Zhang, Y.; Wang, H.; Xie, H.; Mao, F.; Wang, S.; Jin, H.; et al. Transcriptome-wide analysis of

RNA m6 A methylation and gene expression changes among two Arabidopsis ecotypes and their reciprocal hybrids. Front. Plant

Sci. 2021, 12, 685189. [CrossRef]

Fujimoto, R.; Sasaki, T.; Ishikawa, R.; Osabe, K.; Kawanabe, T.; Dennis, E.S. Molecular mechanisms of epigenetic variation in

plants. Int. J. Mol. Sci. 2012, 13, 9900–9922. [CrossRef]

Kawakatsu, T.; Ecker, J.R. Diversity and dynamics of DNA methylation: Epigenomic resources and tools for crop breeding. Breed.

Sci. 2019, 69, 191–204. [CrossRef]

Greaves, I.K.; Groszmann, M.; Ying, H.; Taylor, J.M.; Peacock, W.J.; Dennis, E.S. Trans chromosomal methylation in Arabidopsis

hybrids. Proc. Natl. Acad. Sci. USA 2012, 109, 3570–3575. [CrossRef]

Zhu, A.; Greaves, I.K.; Dennis, E.S.; Peacock, W.J. Genome-wide analyses of four major histone modifications in Arabidopsis

hybrids at the germinating seed stage. BMC Genom. 2017, 18, 137. [CrossRef]

Horticulturae 2023, 9, 366

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

15 of 18

Zhang, Q.; Wang, D.; Lang, Z.; He, L.; Yang, L.; Zeng, L.; Li, Y.; Zhao, C.; Huang, H.; Zhang, H.; et al. Methylation interactions in

Arabidopsis hybrids require RNA-directed DNA methylation and are influenced by genetic variation. Proc. Natl. Acad. Sci. USA

2016, 113, E4248–E4256. [CrossRef]

Rigal, M.; Becker, C.; Pélissier, T.; Pogorelcnik, R.; Devos, J.; Ikeda, Y.; Weigel, D.; Mathieu, O. Epigenome confrontation triggers

immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids. Proc. Natl. Acad.

Sci. USA 2016, 113, E2083–E2092. [CrossRef]

Kawanabe, T.; Ishikura, S.; Miyaji, N.; Sasaki, T.; Wu, L.M.; Itabashi, E.; Takada, S.; Shimizu, M.; Takasaki-Yasuda, T.; Osabe,

K.; et al. Role of DNA methylation in hybrid vigor in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2016, 113, E6704–E6711.

[CrossRef]

Dapp, M.; Reinders, J.; Bédiée, A.; Balsera, C.; Bucher, E.; Theiler, G.; Granier, C.; Paszkowski, J. Heterosis and inbreeding

depression of epigenetic Arabidopsis hybrids. Nat. Plants 2015, 1, 15092. [CrossRef]

Lauss, K.; Wardenaar, R.; Oka, R.; van Hulten, M.H.A.; Guryev, V.; Keurentjes, J.J.B.; Stam, M.; Johannes, F. Parental DNA

methylation states are associated with heterosis in epigenetic hybrids. Plant Physiol. 2018, 176, 1627–1645. [CrossRef]

Zhang, Q.; Li, Y.; Xu, T.; Srivastava, A.K.; Wang, D.; Zeng, L.; Yang, L.; He, L.; Zhang, H.; Zheng, Z.; et al. The chromatin

remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism. Cell Discov. 2016, 2, 16027. [CrossRef]

Miyaji, N.; Fujimoto, R. Hybrid vigor: Importance of epigenetic processes and consequences for breeding. Adv. Bot. Res. 2018, 88,

247–275.

Miller, M.; Song, Q.; Shi, X.; Juenger, E.T.; Chen, Z.J. Natural variation in timing of stress-responsive gene expression predicts

heterosis in intraspecific hybrids of Arabidopsis. Nat. Commun. 2015, 6, 7453. [CrossRef] [PubMed]

Yang, L.; Li, B.; Zheng, X.Y.; Li, J.; Yang, M.; Dong, X.; He, G.; An, C.; Deng, X.W. Salicylic acid biosynthesis is enhanced and

contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nat. Commun. 2015, 6, 7309.

Calvo-Baltanás, V.; Wang, J.; Chae, E. Hybrid incompatibility of the plant immune system: An opposite force to heterosis

equilibrating hybrid performances. Front. Plant Sci. 2021, 11, 576796. [CrossRef]

Yang, L.; Liu, P.; Wang, X.; Jia, A.; Ren, D.; Tang, Y.; Tang, Y.; Deng, X.W.; He, G. A central circadian oscillator confers defense

heterosis in hybrids without growth vigor costs. Nat. Commun. 2021, 12, 2317. [CrossRef]

Shull, G.H. The composition of a field of maize. J. Hered. 1908, 4, 296–301. [CrossRef]

East, E.M.; Jones, D.F. Inbreeding and Outbreeding: Their Genetic and Sociological Significance; Lippincott: Philadelphia, PA, USA,

1919; p. 285.

Hochholdinger, F.; Hoecker, N. Towards the molecular basis of heterosis. Trends Plant Sci. 2007, 12, 427–432. [CrossRef]

Barth, S.; Busimi, A.K.; Friedrich Utz, H.; Melchinger, A.E. Heterosis for biomass yield and related traits in five hybrids of

Arabidopsis thaliana L. Heynh. Heredity 2003, 91, 36–42. [CrossRef]

Meyer, R.C.; Törjék, O.; Becher, M.; Altmann, T. Heterosis of biomass production in Arabidopsis. Establishment during early

development. Plant Physiol. 2004, 134, 1813–1823. [CrossRef]

Syed, N.H.; Chen, Z.J. Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis

thaliana. Heredity 2005, 94, 295–304. [CrossRef]

Groszmann, M.; Gonzalez-Bayon, R.; Greaves, I.K.; Wang, L.; Huen, A.K.; Peacock, W.J.; Dennis, E.S. Intraspecific Arabidopsis

hybrids show different patterns of heterosis despite the close relatedness of the parental genomes. Plant Physiol. 2014, 166,

265–280. [CrossRef]

van Hulten, M.H.A.; Paulo, M.J.; Kruijer, W.; Vries, H.B.D.; Kemperman, B.; Becker, F.F.M.; Yang, J.; Lauss, K.; Stam, M.E.; van

Eeuwijk, F.A.; et al. Assessment of heterosis in two Arabidopsis thaliana common-reference mapping populations. PLoS ONE 2018,

13, e0205564. [CrossRef]

Wang, L.; Wu, L.M.; Greaves, I.K.; Dennis, E.S.; Peacock, W.J. In Arabidopsis hybrids and Hybrid Mimics, up-regulation of cell

wall biogenesis is associated with the increased plant size. Plant Direct 2019, 3, e00174. [CrossRef]

Li, P.; Su, T.; Zhang, D.; Wang, W.; Xin, X.; Yu, Y.; Zhao, X.; Yu, S.; Zhang, F. Genome-wide analysis of changes in miRNA and

target gene expression reveals key roles in heterosis for Chinese cabbage biomass. Hortic. Res. 2021, 8, 39. [CrossRef]

Jeong, S.Y.; Ahmed, N.U.; Jung, H.J.; Kim, H.T.; Park, J.I.; Nou, I.S. Discovery of candidate genes for heterosis breeding in Brassica

oleracea L. Acta Physiol. Plant. 2017, 39, 180. [CrossRef]

Verma, V.K.; Kalia, P. Combining ability analysis and its relationship with gene action and heterosis in early maturity cauliflower.

Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 877–884. [CrossRef]

Basunanda, P.; Radoev, M.; Ecke, W.; Friedt, W.; Becker, H.C.; Snowdon, R.J. Comparative mapping of quantitative trait loci

involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor. Appl. Genet. 2010, 120, 271–280.

[CrossRef]

Wolko, J.; Dobrzycka, A.; Bocianowski, J.; Bartkowiak-Broda, I. Estimation of heterosis for yield-related traits for single cross and

three-way cross hybrids of oilseed rape (Brassica napus L.). Euphytica 2019, 215, 156. [CrossRef]

Zhu, A.; Wang, A.; Zhang, Y.; Dennis, E.S.; Peacock, W.J.; Greaves, A. Early establishment of photosynthesis and auxin biosynthesis

plays a key role in early biomass heterosis in Brassica napus (Canola) hybrids. Plant Cell Physiol. 2020, 61, 1134–1143. [CrossRef]

Aakanksha; Yadava, S.K.; Yadav, B.G.; Gupta, V.; Mukhopadhyay, A.; Pental, D.; Pradhan, A.K. Genetic analysis of heterosis for

yield influencing traits in Brassica juncea using a doubled haploid population and its backcross progenies. Front. Plant Sci. 2021,

12, 721631. [CrossRef]

Horticulturae 2023, 9, 366

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

16 of 18

Wang, Q.; Yan, T.; Long, Z.; Huang, L.Y.; Zhu, Y.; Xu, Y.; Chen, X.; Pak, H.; Li, J.; Wu, D.; et al. Prediction of heterosis in the

recent rapeseed (Brassica napus) polyploid by pairing parental nucleotide sequences. PLoS Genet. 2021, 17, e1009879. [CrossRef]

[PubMed]

Hu, Y.; Xiong, J.; Shalby, N.; Zhuo, C.; Jia, Y.; Yang, Q.Y.; Tu, J. Comparison of dynamic 3D chromatin architecture uncovers

heterosis for leaf size in Brassica napus. J. Adv. Res. 2022, 42, 289–301. [CrossRef] [PubMed]

Tamta, S.; Singh, J. Heterosis in tomato for growth and yield traits. Int. J. Veg. Sci. 2018, 24, 169–179. [CrossRef]

Chandel, R.; Sadashiva, A.T.; Ravishankar, K.V.; Das, A.; Rout, B.M.; Singh, S. Genetic combining, heterosis analysis for

horticultural traits in tomato (Solanum lycopersicum L.) using ToLCV-resistant lines and molecular validation of Ty genes. Plant

Genet. Resour. 2021, 19, 512–521. [CrossRef]

Rajendran, S.; Bae, J.H.; Park, M.W.; Oh, J.H.; Jeong, H.W.; Lee, Y.K.; Park, S.J. Tomato yield effects of reciprocal hybridization of

Solanum lycopersicum cultivars M82 and Micro-Tom. Plant Breed. Biotechnol. 2022, 10, 37–48. [CrossRef]

Kakizaki, Y. Hybrid vigor in egg-plants and its practical utilization. Genetics 1931, 16, 1–25. [CrossRef]

Kaushik, P.; Prohens, J.; Vilanova, S.; Gramazio, P.; Plazas, M. Phenotyping of eggplant wild relatives and interspecific hybrids

with conventional and phenomics descriptors provides insight for their potential utilization in breeding. Front. Plant Sci. 2016, 7,

677. [CrossRef]

Kaushik, P. Line × Tester analysis for morphological and fruit biochemical traits in eggplant (Solanum melongena L.) using wild

relatives as testers. Agronomy 2019, 9, 185. [CrossRef]

Kumar, A.; Sharma, V.; Jain, B.T.; Kaushik, P. Heterosis breeding in eggplant (Solanum melongena L.): Gains and provocations.

Plants 2020, 9, 403. [CrossRef]

Tian, F.; Bradbury, P.J.; Brown, P.J.; Hung, H.; Sun, Q.; Flint-Garcia, S.; Rocheford, T.R.; McMullen, M.D.; Holland, J.B.; Buckler,

E.S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 2011, 43,

159–162. [CrossRef]

Ko, D.K.; Rohozinski, D.; Song, Q.; Taylor, S.H.; Juenger, T.E.; Harmon, F.G.; Chen, Z.J. Temporal shift of circadian-mediated gene

expression and carbon fixation contributes to biomass heterosis in maize hybrids. PLoS Genet. 2016, 12, e1006197. [CrossRef]

Song, Y.; Zhang, Z.; Tan, X.; Jiang, Y.; Gao, J.; Lin, L.; Wang, Z.; Ren, J.; Wang, X.; Qin, L.; et al. Association of the molecular

regulation of ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the reproductive stage in

maize. Sci. Rep. 2016, 6, 29843. [CrossRef]

Yang, J.; Mezmouk, S.; Baumgarten, A.; Buckler, E.S.; Guill, K.E.; McMullen, M.D.; Mumm, R.H.; Ross-Ibarra, J. Incomplete

dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genet. 2017, 13, e1007019.

[CrossRef]

Liu, H.; Wang, Q.; Chen, M.; Ding, Y.; Yang, X.; Liu, J.; Li, X.; Zhou, C.; Tian, Q.; Lu, Y.; et al. Genome-wide identification and

analysis of heterotic loci in three maize hybrids. Plant Biotechnol. J. 2020, 18, 185–194. [CrossRef]

Birdseye, D.; de Boer, L.A.; Bai, H.; Zhou, P.; Shen, Z.; Schmelz, E.A.; Springer, N.M.; Briggs, S.P. Plant height heterosis is

quantitatively associated with expression levels of plastid ribosomal proteins. Proc. Natl. Acad. Sci. USA 2021, 118, e2109332118.

[CrossRef]

Song, G.S.; Zhai, H.L.; Peng, Y.G.; Zhang, L.; Wei, G.; Chen, X.Y.; Xiao, Y.G.; Wang, L.; Chen, Y.J.; Wu, B.; et al. Comparative

transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol. Plant 2010, 3, 1012–1025.

[CrossRef]

Dan, Z.; Liu, P.; Huang, W.; Zhou, W.; Yao, G.; Hu, J.; Zhu, R.; Lu, B.; Zhu, Y. Balance between a higher degree of heterosis

and increased reproductive isolation: A strategic design for breeding inter-subspecific hybrid rice. PLoS ONE 2014, 9, e93122.

[CrossRef]

Shen, G.; Hu, W.; Zhang, B.; Xing, Y. The regulatory network mediated by circadian clock genes is related to heterosis in rice. J.

Integr. Plant Biol. 2015, 57, 300–312. [CrossRef]

Zhu, D.; Zhou, G.; Xu, C.; Zhang, Q. Genetic components of heterosis for seedling traits in an elite rice hybrid analyzed using an

immortalized F2 population. J. Genet. Genom. 2016, 43, 87–97. [CrossRef]

Song, X.; Ni, Z.; Yao, Y.; Zhang, Y.; Sun, Q. Identification of differentially expressed proteins between hybrid and parents in wheat

(Triticum aestivum L.) seedling leaves. Theor. Appl. Genet. 2009, 118, 213–225. [CrossRef]

Yi, H.; Lee, J.; Song, H.; Dong, X.; Hur, Y. Genome-wide analysis of heterosis-related genes in non-heading Chinese cabbage. J.

Plant Biotechnol. 2017, 44, 208–219. [CrossRef]

Liu, T.; Duan, W.; Chen, Z.; Yuan, J.; Xiao, D.; Hou, X.; Li, Y. Enhanced photosynthetic activity in pak choi hybrids is associated

with increased grana thylakoids in chloroplasts. Plant J. 2020, 103, 2211–2224. [CrossRef] [PubMed]

Li, S.; Jayasinghege, C.P.A.; Guo, J.; Zhang, E.; Wang, X.; Xu, Z. Comparative transcriptomic analysis of gene expression

inheritance patterns associated with cabbage head heterosis. Plants 2021, 10, 275.

Li, X.; Lv, H.; Zhang, B.; Fang, Z.; Yang, L.; Zhuang, M.; Liu, Y.; Li, Z.; Wang, Y.; Zhang, Y. Dissection of two QTL clusters

underlying yield-related heterosis in the cabbage founder parent 01-20. Hortic. Plant J. 2023, 9, 77–88. [CrossRef]

Li, H.; Yuan, J.; Wu, M.; Han, Z.; Li, L.; Jiang, H.; Jia, Y.; Han, X.; Liu, M.; Sun, D.; et al. Transcriptome and DNA methylome

reveal insights into yield heterosis in the curds of broccoli (Brassica oleracea L. var. italic). BMC Plant Biol. 2018, 18, 168. [CrossRef]

Kong, X.; Chen, L.; Wei, T.; Zhou, H.; Bai, C.; Yan, X.; Miao, Z.; Xie, J.; Zhang, L. Transcriptome analysis of biological pathways

associated with heterosis in Chinese cabbage. Genomics 2020, 112, 4732–4741. [CrossRef]

Horticulturae 2023, 9, 366

17 of 18

110. Shen, Y.; Sun, S.; Hua, S.; Shen, E.; Ye, C.Y.; Cai, D.; Timko, M.P.; Zhu, Q.H.; Fan, L. Analysis of transcriptional and epigenetic

changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs. Plant J. 2017, 91, 874–893. [CrossRef]

111. Birchler, J.A.; Yao, H.; Chudalayandi, S.; Vaiman, D.; Veitia, R.A. Heterosis. Plant Cell 2010, 22, 2105–2112. [CrossRef]

112. Wu, X.; Liu, Y.; Zhang, Y.; Gu, R. Advances in research on the mechanism of heterosis in plants. Front. Plant Sci. 2021, 12, 745726.

[CrossRef]

113. Yue, L.; Sun, R.; Li, G.; Cheng, F.; Gao, L.; Wang, Q.; Zhang, S.; Zhang, H.; Zhang, S.; Li, F. Genetic dissection of heterotic loci

associated with plant weight by Graded pool-seq in heading Chinese cabbage (Brassica rapa). Planta 2022, 255, 126. [CrossRef]

114. Choi, S.R.; Yu, X.; Dhandapani, V.; Li, X.; Wang, Z.; Lee, S.Y.; Oh, S.H.; Pang, W.; Ramchiary, N.; Hong, C.P.; et al. Integrated

analysis of leaf morphological and color traits in different populations of Chinese cabbage (Brassica rapa ssp. pekinensis). Theor.

Appl. Genet. 2017, 130, 1617–1634. [CrossRef]

115. Sun, X.; Luo, S.; Luo, L.; Wang, X.; Chen, X.; Lu, Y.; Shen, S.; Zhao, J.; Bonnema, G. Genetic analysis of Chinese cabbage reveals

correlation between rosette leaf and leafy head variation. Front. Plant Sci. 2018, 9, 1455. [CrossRef]

116. Liu, Z.; Jiang, J.; Ren, A.; Xu, X.; Zhang, H.; Zhao, T.; Jiang, X.; Sun, Y.; Li, J.; Yang, H. Heterosis and combining ability analysis of

fruit yield, early maturity, and quality in tomato. Agronomy 2021, 11, 807. [CrossRef]

117. Geleta, L.F.; Labuschagne, M.T.; Viljoen, C.D. Relationship between heterosis and genetic distance based on morphological traits

and AFLP markers in pepper. Plant Breed. 2004, 123, 467–473. [CrossRef]

118. Yang, S.; Zhang, Z.; Chen, W.; Li, X.; Zhou, S.; Liang, C.; Li, X.; Yang, B.; Zou, X.; Liu, F.; et al. Integration of mRNA and miRNA

profiling reveals the heterosis of three hybrid combinations of Capsicum annuum varieties. GM Crops Food 2021, 12, 224–241.

[CrossRef]

119. Naves, E.R.; Scossa, F.; Araújo, W.L.; Nunes-Nesi, A.; Fernie, A.R.; Zsögön, A. Heterosis for capsacinoids accumulation in chili

pepper hybrids is dependent on parent-of-origin effect. Sci. Rep. 2022, 12, 14450. [CrossRef]

120. Rodríguez-Burruezo, A.; Prohens, J.; Nuez, F. Performance of hybrids between local varieties of eggplant (Solanum melongena)

and its relation to the mean of parents and to morphological and genetic distances among parents. Eur. J. Hortic. Sci. 2008, 73, 76.

121. Liu, C.; Liu, X.; Han, Y.; Meng, H.; Cheng, Z. Heterosis prediction system based on non-additive genomic prediction models in

cucumber (Cucumis sativus L.). Sci. Hortic. 2022, 293, 110677. [CrossRef]

122. Wu, L. Relationship between SRAP marker based on genetic distance, combining ability and heterosis in pepper. Chin. J. Trop.

Crops 2020, 41, 661–668.

123. Luan, F.; Sheng, Y.; Wang, Y.; Staub, J.E. Performance of melon hybrids derived from parents of diverse geographic origins.

Euphytica 2010, 173, 1–16. [CrossRef]

124. Dafna, A.; Halperin, I.; Oren, E.; Isaacson, T.; Tzuri, G.; Meir, A.; Schaffer, A.A.; Burger, J.; Tadmor, Y.; Buckler, E.S.; et al.

Underground heterosis for yield improvement in melon. J. Exp. Bot. 2021, 72, 6205–6218. [CrossRef] [PubMed]

125. Onofri, A.; Terzaroli, N.; Russi, L. Linear models for diallel crosses: A review with R functions. Theor. Appl. Genet. 2021, 134,

585–601. [CrossRef] [PubMed]

126. Shajari, M.; Soltani, F.; Bihamta, M.R.; Alabboud, M. Genetic analysis and inheritance of floral and fruit traits in melon (Cucumis

melo) in the full diallel cross. Plant Breed. 2021, 140, 486–496. [CrossRef]

127. Aiswarya, C.S.; Vijeth, S.; Sreelathakumary, I.; Kaushik, P. Diallel analysis of chilli pepper (Capsicum annuum L.) genotypes for

morphological and fruit biochemical traits. Plants 2020, 9, 1.

128. Das, I.; Hazra, P.; Longjam, M.; Bhattacharjee, T.; Maurya, P.K.; Banerjee, S.; Chattopadhyay, A. Genetic control of reproductive

and fruit quality traits in crosses involving cultivars and induced mutants of tomato (Solanum lycopersicum L.). J. Genet. 2020, 99, 56.

[CrossRef]

129. Datta, D.R.; Rafii, M.Y.; Misran, A.; Jusoh, M.; Yusuff, O.; Haque, M.A.; Jatto, M.I. Half diallel analysis for biochemical and

morphological traits in cultivated eggplants (Solanum melongena L.). Agronomy 2021, 11, 1769. [CrossRef]

130. Kaur, S.; Sharma, S.P.; Sarao, N.K.; Deol, J.K.; Gill, R.; Abd-Elsalam, K.A.; Alghuthaymi, M.A.; Hassan, M.M.; Chawla, N.

Heterosis and combining ability for fruit yield, sweetness, β-Carotene, ascorbic acid, firmness and Fusarium wilt resistance in

muskmelon (Cucumis melo L.) involving genetic male sterile lines. Horticulturae 2022, 8, 82. [CrossRef]

131. Pavan, M.P.; Gangaprasad, S. Studies on mode of gene action for fruit quality characteristics governing shelf life in tomato

(Solanum lycopersicum L.). Sci. Hortic. 2022, 293, 110687. [CrossRef]

132. Semel, Y.; Nissenbaum, J.; Menda, N.; Zinder, M.; Krieger, U.; Issman, N.; Pleban, T.; Lippman, Z.; Gur, A.; Zamir, D. Overdominant

quantitative trait loci for yield and fitness in tomato. Proc. Natl. Acad. Sci. USA 2006, 103, 12981–12986. [CrossRef]

133. Gur, A.; Zamir, D. Unused natural variation can lift yield barriers in plant breeding. PLoS Biol. 2004, 2, e245. [CrossRef]

134. Gur, A.; Zamir, D. Mendelizing all components of a pyramid of three yield QTL in tomato. Front. Plant Sci. 2015, 6, 1096.

[CrossRef]

135. Yeager, A.F. Determinate growth in the tomato. J. Hered. 1927, 18, 263–265. [CrossRef]

136. Thouet, J.; Quinet, M.; Ormenese, S.; Kinet, J.M.; Périlleux, C. Revisiting the involvement of SELF-PRUNING in the sympodial

growth of tomato. Plant Physiol. 2008, 148, 61–64. [CrossRef]

137. Jiang, K.; Liberatore, K.L.; Park, S.J.; Alvarez, J.P.; Lippman, Z.B. Tomato yield heterosis is triggered by a dosage sensitivity of the

florigen pathway that fine-tunes shoot architecture. PLoS Genet. 2013, 9, e1004043. [CrossRef]

138. Park, S.J.; Jiang, K.; Tal, L.; Yichie, Y.; Gar, O.; Zamir, D.; Eshed, Y.; Lippman, Z.B. Optimization of crop productivity in tomato

using induced mutations in the florigen ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る