リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Oral colonisation by antimicrobial-resistant Gram-negative bacteria among long-term care facility residents: prevalence, risk factors, and molecular epidemiology」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Oral colonisation by antimicrobial-resistant Gram-negative bacteria among long-term care facility residents: prevalence, risk factors, and molecular epidemiology

Le Mi Nguyen Tra 広島大学

2020.09.18

概要

Background: For residents of long-term care facilities (LTCFs), antimicrobial-resistant bacteria (ARB) are a risk factor,
yet their oral colonisation, potentially leading to aspiration pneumonia, remains unclear. This study was undertaken
to survey the prevalence, phenotypic characteristics, and molecular epidemiology of antimicrobial-resistant Gramnegative bacteria in the oral cavity of LTCF residents, and to analyse the risk factors for such carriers.
Methods: This study involved 98 residents of a LTCF in Hiroshima City, Japan, aged between 55 and 101 years.
Oropharyngeal swabs were collected and plated on screening media for ESBL-producing and carbapenem-resistant
bacteria; isolates were identified and tested for antibiotic susceptibility; biofilm formation was tested in vitro;
identification of epidemic clones were pre-determined by PCR; resistance genes, sequence types, and wholegenome comparison of strains were conducted using draft genome sequences. Demographic data and clinical
characterisations were collected and risk factors analysed.
Results: Fifty-four strains from 38% of the residents grew on screening media and comprised predominantly of
Acinetobacter spp. (35%), Enterobacteriaceae spp. (22%), and Pseudomonas spp. (19%). All Escherichia coli isolates carried
CTX-M-9 group and belonged to the phylogroup B2, O25:H4 ST131 fimH30 lineage. Six Acinetobacter baumannii
isolates presented identical molecular characteristics and revealed more biofilm production than the others, strongly
suggesting their clonal lineage. One Acinetobacter ursingii isolate displayed extensive resistance to various ß-lactams
due to multiple acquired resistance genes. One Pseudomonas aeruginosa isolate showed exceptional resistance to all ßlactams including carbapenems, aminoglycosides, and a new quinolone, showing a multidrug-resistant Pseudomonas
aeruginosa (MDRP) phenotype and remarkable biofilm formation. Genome sequence analysis revealed this isolate was
the blaIMP-1-positive clone ST235 in Japan. Strokes (cerebral infarction or cerebral haemorrhage) and percutaneous
endoscopic gastrostomy tubes were recognised as risk factors for oral colonisation by ARB in the LTCF residents.
Conclusions: ARB, as defined by growth on screening agar plates, which carried mobile resistance genes or elements
or conferred high biofilm formation, were already prevalent in the oral cavity of LTCF residents. Health-care workers
involved in oral care should be aware of antimicrobial resistance and pay special attention to transmission prevention
and infection control measures to diminish ARB or mobile resistance elements dissemination in LTCFs.
Keywords: Antimicrobial resistant bacteria, Oral colonisation, Extended-spectrum ß-lactamases, Carbapenemase,
Escherichia coli, Acinetobacter baumannii, Acinetobacter ursingii, Pseudomonas aeruginosa, Risk factor analysis
* Correspondence: sugai@niid.go.jp
1
Project Research Centre for Nosocomial Infectious Diseases, Hiroshima
University, Hiroshima, Japan
2
Department of Antimicrobial Resistance, Hiroshima University Graduate
School of Biomedical & Health Sciences, Hiroshima, Japan
Full list of author information is available at the end of the article
© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. ...

この論文で使われている画像

参考文献

1. Nicolle LE, Strausbaugh LJ, Garibaldi RA. Infections and antibiotic resistance

in nursing homes. Clin Microbiol Rev. 1996;9(1):1–17.

2. Bureau S. Ministry of Internal Affairs and Communications. Japan: Statistical

Handbook of Japan; 2018.

3. Kariya N, Sakon N, Komano J, Tomono K, Iso H. Current prevention and

control of health care-associated infections in long-term care facilities for

the elderly in Japan. J Infect Chemother. 2018;24(5):347–52.

4. Flokas ME, Alevizakos M, Shehadeh F, Andreatos N, Mylonakis E. Extendedspectrum beta-lactamase-producing Enterobacteriaceae colonisation in longterm care facilities: a systematic review and meta-analysis. Int J Antimicrob

Agents. 2017;50(5):649–56.

5. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):

881–90.

6. Johanson WG, Pierce AK, Sanford JP. Changing pharyngeal bacterial flora of

hospitalized patients. Emergence of gram-negative bacilli. N Engl J Med.

1969;281(21):1137–40.

7. March A, Aschbacher R, Dhanji H, Livermore DM, Bottcher A, Sleghel F, et al.

Colonization of residents and staff of a long-term-care facility and adjacent

acute-care hospital geriatric unit by multiresistant bacteria. Clin Microbiol

Infect. 2010;16(7):934–44.

8. Kouda S, Ohara M, Onodera M, Fujiue Y, Sasaki M, Kohara T, et al. Increased

prevalence and clonal dissemination of multidrug-resistant Pseudomonas

aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J Antimicrob

Chemother. 2009;64(1):46–51.

9. Sekiguchi J, Asagi T, Miyoshi-Akiyama T, Fujino T, Kobayashi I, Morita K, et al.

Multidrug-resistant Pseudomonas aeruginosa strain that caused an outbreak

in a neurosurgery ward and its aac(6′)-Iae gene cassette encoding a novel

aminoglycoside acetyltransferase. Antimicrob Agents Chemother. 2005;49(9):

3734–42.

10. Miyoshi-Akiyama T, Kuwahara T, Tada T, Kitao T, Kirikae T. Complete genome

sequence of highly multidrug-resistant Pseudomonas aeruginosa NCGM2.S1,

a representative strain of a cluster endemic to Japan. J Bacteriol. 2011;

193(24):7010.

11. Shimizu W, Kayama S, Kouda S, Ogura Y, Kobayashi K, Shigemoto N, et al.

Persistence and epidemic propagation of a Pseudomonas aeruginosa

sequence type 235 clone harboring an IS26 composite transposon carrying

the blaIMP-1 integron in Hiroshima, Japan, 2005 to 2012. Antimicrob Agents

Chemother. 2015;59(5):2678–87.

12. Saito R, Koyano S, Nagai R, Okamura N, Moriya K, Koike K. Evaluation of a

chromogenic agar medium for the detection of extended-spectrum ßlactamase-producing Enterobacteriaceae. Lett Appl Microbiol. 2010;51(6):

704–6.

13. Soria Segarra C, Larrea Vera G, Berrezueta Jara M, Arevalo Mendez M,

Cujilema P, Serrano Lino M, et al. Utility of CHROMagar mSuperCARBA for

surveillance cultures of carbapenemase-producing Enterobacteriaceae. New

Microbes New Infect. 2018;26:42–8.

14. Clinical and Laboratory Standards Institute. Performance standards for

antimicrobial susceptibility testing; Twenty-fitth informational supplement.

M100-S25. Wayne, PA: CLSI; 2015.

15. O'Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011;(47):2437.

16. Suzuki M, Hosoba E, Matsui M, Arakawa Y. New PCR-based open reading

frame typing method for easy, rapid, and reliable identification of

Acinetobacter baumannii international epidemic clones without performing

multilocus sequence typing. J Clin Microbiol. 2014;52(8):2925–32.

17. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the

Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66(10):

4555–8.

Le et al. Antimicrobial Resistance and Infection Control

(2020) 9:45

18. Matsumura Y, Pitout JDD, Peirano G, DeVinney R, Noguchi T, Yamamoto M,

et al. Rapid Identification of Different Escherichia coli Sequence Type 131

Clades. Antimicrob Agents Chemother. 2017;61:e00179–17.

19. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED

and the rapid annotation of microbial genomes using subsystems

technology (RAST). Nucleic Acids Res. 2014;42(Database issue):D206–14.

20. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al.

Multilocus sequence typing of total-genome-sequenced bacteria. J Clin

Microbiol. 2012;50(4):1355–61.

21. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O,

et al. Identification of acquired antimicrobial resistance genes. J Antimicrob

Chemother. 2012;67(11):2640–4.

22. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST ring image generator

(BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402.

23. La Scola B, Gundi VA, Khamis A, Raoult D. Sequencing of the rpoB gene and

flanking spacers for molecular identification of Acinetobacter species. J Clin

Microbiol. 2006;44(3):827–32.

24. Juan C, Torrens G, Gonzalez-Nicolau M, Oliver A. Diversity and regulation of

intrinsic beta-lactamases from non-fermenting and other gram-negative

opportunistic pathogens. FEMS Microbiol Rev. 2017;41(6):781–815.

25. Babini GS, Livermore DM. Are SHV beta-lactamases universal in Klebsiella

pneumoniae? Antimicrob Agents Chemother. 2000;44(8):2230.

26. Passarelli-Araujo H, Palmeiro JK, Moharana KC, Pedrosa-Silva F, Dalla-Costa

LM, Venancio TM. Genomic analysis unveils important aspects of population

structure, virulence, and antimicrobial resistance in Klebsiella aerogenes. FEBS

J. 2019;286(19):3797–810.

27. Seeberg AH, Tolxdorff-Neutzling RM, Wiedemann B. Chromosomal betalactamases of Enterobacter cloacae are responsible for resistance to thirdgeneration cephalosporins. Antimicrob Agents Chemother. 1983;23(6):918–25.

28. Poirel L, Guibert M, Girlich D, Naas T, Nordmann P. Cloning, sequence

analyses, expression, and distribution of ampC-ampR from Morganella

morganii clinical isolates. Antimicrob Agents Chemother. 1999;43(4):769–76.

29. Ender PT, Gajanana D, Johnston B, Clabots C, Tamarkin FJ, Johnson JR.

Transmission of an extended-spectrum-beta-lactamase-producing

Escherichia coli (sequence type ST131) strain between a father and daughter

resulting in septic shock and emphysematous pyelonephritis. J Clin

Microbiol. 2009;47(11):3780–2.

30. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M, Forde

BM, et al. Global dissemination of a multidrug resistant Escherichia coli

clone. Proc Natl Acad Sci U S A. 2014;111(15):5694–9.

31. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis. 2005;

41(Suppl 2):S120–6.

32. Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids

and international high-risk clones in the spread of multidrug-resistant

Enterobacteriaceae. Clin Microbiol Rev. 2015;28(3):565–91.

33. Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008;

358(12):1271–81.

34. Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic

resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;

41(3):276–301.

35. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a

successful pathogen. Clin Microbiol Rev. 2008;21(3):538–82.

36. Nemec A, De Baere T, Tjernberg I, Vaneechoutte M, van der Reijden TJ,

Dijkshoorn L. Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp.

nov., isolated from human clinical specimens. Int J Syst Evol Microbiol. 2001;

51(Pt 5):1891–9.

37. Mader K, Terhes G, Hajdu E, Urban E, Soki J, Magyar T, et al. Outbreak of

septicaemic cases caused by Acinetobacter ursingii in a neonatal intensive

care unit. Int J Med Microbiol. 2010;300(5):338–40.

38. Salzer HJ, Rolling T, Schmiedel S, Klupp EM, Lange C, Seifert H. Severe

community-acquired bloodstream infection with Acinetobacter ursingii in

person who injects drugs. Emerg Infect Dis. 2016;22(1):134–7.

39. Endo S, Sasano M, Yano H, Inomata S, Ishibashi N, Aoyagi T, et al. IMP-1producing carbapenem-resistant Acinetobacter ursingii from Japan. J

Antimicrob Chemother. 2012;67(10):2533–4.

40. Sieswerda E, Schade RP, Bosch T, de Vries J, Chamuleau MED, Haarman EG,

et al. Emergence of carbapenemase-producing Acinetobacter ursingii in the

Netherlands. Clin Microbiol Infect. 2017;23(10):779–81.

41. Leibovitz A, Dan M, Zinger J, Carmeli Y, Habot B, Segal R. Pseudomonas

aeruginosa and the oropharyngeal ecosystem of tube-fed patients. Emerg

Infect Dis. 2003;9(8):956–9.

Page 14 of 14

42. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the

quiet before the storm? Clin Microbiol Rev. 2005;18(2):306–25.

43. Hanes SD, Demirkan K, Tolley E, Boucher BA, Croce MA, Wood GC, et al. Risk

factors for late-onset nosocomial pneumonia caused by Stenotrophomonas

maltophilia in critically ill trauma patients. Clin Infect Dis. 2002;35(3):228–35.

44. Gill TM, Allore HG, Holford TR, Guo Z. Hospitalization, restricted activity, and

the development of disability among older persons. JAMA. 2004;292(17):

2115–24.

45. Donskey CJ. The role of the intestinal tract as a reservoir and source for

transmission of nosocomial pathogens. Clin Infect Dis. 2004;39(2):219–26.

46. Umezawa K, Asai S, Ohshima T, Iwashita H, Ohashi M, Sasaki M, et al.

Outbreak of drug-resistant Acinetobacter baumannii ST219 caused by oral

care using tap water from contaminated hand hygiene sinks as a reservoir.

Am J Infect Control. 2015;43(11):1249–51.

47. Liu C, Cao Y, Lin J, Ng L, Needleman I, Walsh T, et al. Oral care measures for

preventing nursing home-acquired pneumonia. Cochrane Database Syst

Rev. 2018;9:CD012416.

48. Hollaar VRY, van der Putten GJ, van der Maarel-Wierink CD, Bronkhorst EM,

de Swart BJM, de Baat C, et al. Nursing home-acquired pneumonia,

dysphagia and associated diseases in nursing home residents: a

retrospective, cross-sectional study. Geriatr Nurs. 2017;38(5):437–41.

49. Low LF, Fletcher J, Goodenough B, Jeon YH, Etherton-Beer C, MacAndrew

M, et al. A systematic review of interventions to change staff care practices

in order to improve resident outcomes in nursing homes. PLoS One. 2015;

10(11):e0140711.

50. Quagliarello V, Ginter S, Han L, Van Ness P, Allore H, Tinetti M. Modifiable

risk factors for nursing home-acquired pneumonia. Clin Infect Dis. 2005;

40(1):1–6.

51. Schwendicke F, Stolpe M, Muller F. Professional oral health care for

preventing nursing home-acquired pneumonia: a cost-effectiveness and

value of information analysis. J Clin Periodontol. 2017;44(12):1236–44.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る