リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Human papillomavirus genotype contribution to cervical cancer and precancer: Implications for screening and vaccination in Japan.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Human papillomavirus genotype contribution to cervical cancer and precancer: Implications for screening and vaccination in Japan.

Mamiko Onuki Koji Matsumoto Takashi Iwata Kasumi Yamamoto Yoichi Aoki Shoji Maenohara Naotake Tsuda Shoji Kamiura Kazuhiro Takehara Koji Horie Nobutaka Tasaka Hideaki Yahata Yuji Takei Hisamori Kato Takeshi Motohara Keiichiro Nakamura Mitsuya Ishikawa Tatsuya Kato Hiroyuki Yoshida Noriomi Matsumura Hidekatsu Nakai Shogo Shigeta Fumiaki Takahashi Kiichiro Noda Nobuo Yaegashi Hiroyuki Yoshikawa 東北大学 DOI:10.1111/cas.14445

2020.05.06

概要

To obtain baseline data for cervical cancer prevention in Japan, we analyzed human papillomavirus (HPV) data from 5045 Japanese women aged less than 40 years and diagnosed with cervical abnormalities at 21 hospitals during 2012-2017. These in- cluded cervical intraepithelial neoplasia grade 1 (CIN1, n = 573), CIN2-3 (n = 3219), adenocarcinoma in situ (AIS, n = 123), and invasive cervical cancer (ICC, n = 1130). The Roche Linear Array was used for HPV genotyping. The HPV type-specific rela- tive contributions (RCs) were estimated by adding multiple infections to single types in accordance with proportional weighting attributions. Based on the comparison of type-specific RCs between CIN1 and CIN2-3/AIS/ICC (CIN2+), RC ratios were calcu- lated to estimate type-specific risks for progression to CIN2+. Human papillomavirus DNA was detected in 85.5% of CIN1, 95.7% of CIN2-3/AIS, and 91.2% of ICC. Multiple infections decreased with disease severity: 42.9% in CIN1, 40.4% in CIN2-3/AIS, and 23.7% in ICC (P < .0001). The relative risk for progression to CIN2+ was highest for HPV16 (RC ratio 3.78, 95% confidence interval [CI] 3.01-4.98), followed by HPV31 (2.51, 1.54-5.24), HPV18 (2.43, 1.59-4.32), HPV35 (1.56, 0.43-8.36), HPV33 (1.01, 0.49-3.31), HPV52 (0.99, 0.76-1.33), and HPV58 (0.97, 0.75-1.32). The relative risk of disease progression was 1.87 (95% CI, 1.71-2.05) for HPV16/18/31/33/35/45/52/58, but only 0.17 (95% CI, 0.14-0.22) for HPV39/51/56/59/66/68. Human papilloma- virus 16/18/31/33/45/52/58/6/11 included in a 9-valent vaccine contributed to 89.7% (95% CI, 88.7-90.7) of CIN2-3/AIS and 93.8% (95% CI, 92.4-95.3) of ICC. In conclusion, our data support the Japanese guidelines that recommend discriminat- ing HPV16/18/31/33/35/45/52/58 genotypes for CIN management. The 9-valent vaccine is estimated to provide over 90% protection against ICC in young Japanese women.

KEYWORDS
adenocarcinoma in situ, cervical intraepithelial neoplasia, human papillomavirus, invasive cervical cancer, vaccine

この論文で使われている画像

参考文献

1.1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424.

1.2. Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020;8:e191-203.

1.3. Muñoz N, Bosch FX, Castellsagué X, et al. Against which human papillomavirus types shall we vaccinate and screen? The interna- tional perspective. Int J Cancer. 2004;111:278-285.

1.4. Joura EA, Giuliano AR, Iversen OE, et al. Broad Spectrum HPV Vaccine Study. A 9-valent HPV vaccine against infection and intraep- ithelial neoplasia in women. N Engl J Med. 2015;19(372):711-723.

1.5. de Sanjose S, Quint WG, Alemany L, et al. Retrospective International Survey and HPV Time Trends Study Group. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11:1048-1056.

1.6. Serrano B, Alemany L, Tous S, et al. Potential impact of a nine-va- lent vaccine in human papillomavirus related cervical disease. Infect Agent Cancer. 2012;7:38.

1.7. Hildesheim A, Herrero R, Wacholder S, et al. Costa Rican HPV Vaccine Trial Group. Effect of human papillomavirus 16/18 L1 virus-like particle vaccine among young women with preexisting infection: a randomized trial. JAMA. 2007;298:743-753.

1.8. Mayrand MH, Duarte-Franco E, Rodrigues I, et al. Canadian Cervical Cancer Screening Trial Study Group. Human papillomavi- rus DNA versus Papanicolaou screening tests for cervical cancer. N Engl J Med. 2007;357:1579-1588.

1.9. Ronco G, Dillner J, Elfström KM, et al. International HPV screening working group. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383:524-532.

1.10. Wright TC Jr, Schiffman M, Solomon D, et al. Interim guidance for the use of human papillomavirus DNA testing as an adjunct to cer- vical cytology for screening. Obstet Gynecol. 2004;103:304-309.

1.11. Aitken CA, van Agt HME, Siebers AG, et al. Introduction of primary screening using high-risk HPV DNA detection in the Dutch cervi- cal cancer screening programme: a population-based cohort study. BMC Med. 2019;17:228.

1.12. Sultana F, Roeske L, Malloy MJ, et al. Implementation of Australia's renewed cervical screening program: Preparedness of general prac- titioners and nurses. PLoS ONE. 2020;15:e0228042.

1.13. Simms KT, Steinberg J, Caruana M, et al. Impact of scaled up human papillomavirus vaccination and cervical screening and the potential for global elimination of cervical cancer in 181 countries, 2020–99: a modelling study. Lancet Oncol. 2019;20:394-407.

1.14. Yagi A, Ueda Y, Kakuda M, et al. Epidemiologic and clinical analysis of cervical cancer using data from the population-based osaka can- cer registry. Cancer Res. 2019;79:1252-1259.

1.15. Utada M, Chernyavskiy P, Lee WJ, et al. Increasing risk of uterine cervical cancer among young Japanese women: Comparison of in- cidence trends in Japan, South Korea and Japanese-Americans be- tween 1985 and 2012. Int J Cancer. 2019;144:2144-2152.

1.16. Kawaguchi R, Matsumoto K, Akira S, et al. Guidelines for office gynecology in Japan: Japan Society of Obstetrics and Gynecology (JSOG) and Japan Association of Obstetricians and Gynecologists (JAOG) 2017 edition. J Obstet Gynaecol Res. 2019; 45: 766-786.

1.17. Matsumoto K, Yaegashi N, Iwata T, et al. Monitoring the impact of a national HPV vaccination program in Japan (MINT Study): rationale, design and methods. Jpn J Clin Oncol. 2014; 44: 1000-1003.

1.18. Matsumoto K, Yaegashi N, Iwata T, et al. Study Group. Reduction in HPV16/18 prevalence among young women with high-grade cervical lesions following the Japanese HPV vaccination program. Cancer Sci. 2019;110:3811-3820.

1.19. Onuki M, Matsumoto K, Satoh T, et al. Human papillomavirus infec- tions among Japanese women: age-related prevalence and type-spe- cific risk for cervical cancer. Cancer Sci. 2009;100:1312-1316.

1.20. Sakamoto J, Kamiura S, Okayama K, et al. Single type infection of human papillomavirus as a cause for high-grade cervical intraepithelial neopla- sia and invasive cancer in Japan. Papillomavirus Res. 2018;6:46-51.

1.21. Azuma Y, Kusumoto-Matsuo R, Takeuchi F, et al. Human papillo- mavirus genotype distribution in cervical intraepithelial neoplasia grade 2/3 and invasive cervical cancer in Japanese women. Jpn J Clin Oncol. 2014;44:910-917.

1.22. Wentzensen N, Schiffman M, Palmer T, Arbyn M. Triage of HPV pos- itive women in cervical cancer screening. J Clin Virol. 2016;76(Suppl 1):S49-S55.

1.23. Matsumoto K, Oki A, Furuta R, et al. Japan HPV And Cervical Cancer Study Group. Predicting the progression of cervical pre- cursor lesions by human papillomavirus genotyping: a prospective cohort study. Int J Cancer. 2011;128:2898-2910.

1.24. Nakagawa S, Yoshikawa H, Onda T, Kawana T, Iwamoto A, Taketani Y. Type of human papillomavirus is related to clinical features of cervical carcinoma. Cancer. 1996;78:1935-1941.

1.25. Hammer A, Rositch A, Qeadan F, Gravitt PE, Blaakaer J. Age- specific prevalence of HPV16/18 genotypes in cervical cancer: A systematic review and meta-analysis. Int J Cancer. 2016;138: 2795-2803.

1.26. Saraiya M, Unger ER, Thompson TD, et al. US assessment of HPV types in cancers: implications for current and 9-valent HPV vac- cines. J Natl Cancer Inst. 2015; 107: djv086.

1.27. Walboomers JM, Jacobs MV, Manos MM, et al. Human papilloma- virus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12-19.

1.28. Arroyo Mühr LS, Lagheden C, Eklund C, et al. Sequencing detects human papillomavirus in some apparently HPV-negative inva- sive cervical cancers. J Gen Virol. 2020;101:265–270. https://doi. org/10.1099/jgv.0.001374.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る