リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats

石内 直樹 広島大学

2020.05.28

概要

Background: Mesenchymal stem cells (MSCs) have been reported to promote the regeneration of injured tissue via
their paracrine abilities, which are enhanced by hypoxic preconditioning. In this study, we examined the therapeutic
efficacy of hypoxia-preconditioned MSCs on renal fibrosis and inflammation in rats with ischemia-reperfusion injury
(IRI).
Methods: MSCs derived from rats and humans were incubated in 1% O2 conditions (1%O2 MSCs) for 24 h. After IRI,
1%O2 MSCs or MSCs cultured under normoxic conditions (21%O2 MSCs) were injected through the abdominal aorta.
At 7 or 21 days post-injection, the rats were sacrificed and their kidneys were analyzed. In in vitro experiments, we
examined whether 1%O2 MSCs enhanced the ability to produce anti-fibrotic humoral factors using transforming
growth factor (TGF)-β1-stimulated HK-2 cells incubated with conditioned medium from MSCs.
Results: Administration of rat 1%O2 MSCs (1%O2 rMSCs) attenuated renal fibrosis and inflammation more significantly
than rat 21%O2 MSCs. Notably, human 1%O2 MSCs (1%O2 hMSCs) also attenuated renal fibrosis to the same extent as
1%O2 rMSCs. Flow cytometry showed that 1%O2 hMSCs did not change human leukocyte antigen expression. Further
in vitro experiments revealed that conditioned medium from 1%O2 MSCs further suppressed TGF-β1-induced fibrotic
changes in HK-2 cells compared with 21%O2 MSCs. Hypoxic preconditioning enhanced vascular endothelial growth
factor (VEGF) and hepatocyte growth factor (HGF) secretion. Interestingly, VEGF knockdown in 1%O2 MSCs attenuated
HGF secretion and the inhibition of TGF-β1-induced fibrotic changes in HK-2 cells. In addition, VEGF knockdown in
1%O2 hMSCs reduced the anti-fibrotic effect in IRI rats.
Conclusions: Our results indicate that hypoxia-preconditioned MSCs are useful as an allogeneic transplantation cell
therapy to prevent renal fibrosis and inflammation. ...

この論文で使われている画像

参考文献

1. James MT, Hemmelgarn BR, Tonelli M. Early recognition and prevention of

chronic kidney disease. Lancet. 2010;375:1296–309.

2. Pani A, Bragg-Gresham J, Masala M, Piras D, Atzeni A, Pilia MG, et al.

Prevalence of CKD and its relationship to eGFR-related genetic loci and

clinical risk factors in the SardiNIA study cohort. J Am Soc Nephrol. 2014;25:

1533–44.

3. Mahmoodi BK, Matsushita K, Woodward M, Blankestijn PJ, Cirillo M, Ohkubo

T, et al. Associations of kidney disease measures with mortality and endstage renal disease in individuals with and without hypertension: a metaanalysis. Lancet. 2012;380:1649–61.

4. Anand S, Shivashankar R, Ali MK, Kondal D, Binukumar B, Montez-Rath ME,

et al. Prevalence of chronic kidney disease in two major Indian cities and

projections for associated cardiovascular disease. Kidney Int. 2015;88:178–85.

5. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence

of chronic kidney disease in the United States. JAMA. 2007;298:2038–47.

6. Brück K, Stel VS, Gambaro G, Hallan S, Völzke H, Ärnlöv J, et al. CKD

prevalence varies across the European general population. J Am Soc

Nephrol. 2016;27:2135–47.

7. Xie Y, Bowe B, Mokdad AH, Xian H, Yan Y, Li T, et al. Analysis of the Global

Burden of Disease study highlights the global, regional, and national trends

of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int.

2018;94:567–81.

8. Ishani A, Xue JL, Himmelfarb J, Eggers PW, Kimmel PL, Molitoris BA, et al.

Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol.

2009;20:223–8.

9. Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE. The severity of

acute kidney injury predicts progression to chronic kidney disease. Kidney

Int. 2011;79:1361–9.

10. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney

injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–8.

11. Vielhauer V, Berning E, Eis V, Kretzler M, Segerer S, Strutz F, et al. CCR1

blockade reduces interstitial inflammation and fibrosis in mice with

glomerulosclerosis and nephrotic syndrome. Kidney Int. 2004;66:2264–78.

12. Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc

Nephrol. 2010;21:1819–34.

13. Fu Y, Tang C, Cai J, Chen G, Zhang D, Dong Z, et al. Rodent models of AKICKD transition. Am J Physiol Renal Physiol. 2018;315:F1098–106.

14. Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: an

integrated clinical syndrome. Kidney Int. 2012;82:516–24.

15. Tanaka S, Tanaka T, Nangaku M. Hypoxia as a key player in the AKI-to-CKD

transition. Am J Physiol Renal Physiol. 2014;307:F1187–95.

16. Ferenbach DA, Bonventre JV. Mechanisms of maladaptive repair after AKI

leading to accelerated kidney ageing and CKD. Nat Rev Nephrol. 2015;11:

264–76.

17. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous

hMSCs improve myocardial infarction in mice because cells embolized in

lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem

Cell. 2009;5:54–63.

18. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of

intravenous administration of bone marrow stromal cells after cerebral

ischemia in rats. Stroke. 2001;32:1005–11.

19. Karussis D, Kassis I, Kurkalli BG, Slavin S. Immunomodulation and

neuroprotection with mesenchymal bone marrow stem cells (MSCs): a

proposed treatment for multiple sclerosis and other neuroimmunological/

neurodegenerative diseases. J Neurol Sci. 2008;265:131–5.

20. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout

forebrain and cerebellum, and they differentiate into astrocytes after injection

into neonatal mouse brains. Proc Natl Acad Sci. 1999;96:10711–6.

21. Jiang W, Ma A, Wang T, Han K, Liu Y, Zhang Y, et al. Intravenous

transplantation of mesenchymal stem cells improves cardiac performance

after acute myocardial ischemia in female rats. Transpl Int. 2006;19:570–80.

22. Monsel A, Zhu YG, Gennai S, Hao Q, Liu J, Lee JW. Cell-based therapy for

acute organ injury: preclinical evidence and ongoing clinical trials using

mesenchymal stem cells. Anesthesiology. 2014;121:1099–121.

23. Kusuma GD, Carthew J, Lim R, Frith JE. Effect of the microenvironment on

mesenchymal stem cell paracrine signaling: opportunities to engineer the

therapeutic effect. Stem Cells Dev. 2017;26:617–31.

Ishiuchi et al. Stem Cell Research & Therapy

(2020) 11:130

24. Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT. Hypoxic

preconditioning enhances the therapeutic potential of the secretome from

cultured human mesenchymal stem cells in experimental traumatic brain

injury. Clin Sci (Lond). 2013;124:165–76.

25. Lee JH, Yoon YM, Lee SH. Hypoxic preconditioning promotes the

bioactivities of mesenchymal stem cells via the HIF-1α-GRP78-Akt Axis. Int J

Mol Sci. 2017;18:E1320.

26. Yoshida K, Nakashima A, Doi S, Ueno T, Okubo T, Kawano KI, et al. Serumfree medium enhances the immunosuppressive and antifibrotic abilities of

mesenchymal stem cells utilized in experimental renal fibrosis. Stem Cells

Transl Med. 2018;7:893–905.

27. Wang JW, Qiu YR, Fu Y, Liu J, He ZJ, Huang ZT. Transplantation with

hypoxia-preconditioned mesenchymal stem cells suppresses brain injury

caused by cardiac arrest-induced global cerebral ischemia in rats. J Neurosci

Res. 2017;95:2059–70.

28. Wang Z, Fang B, Tan Z, Zhang D, Ma H. Hypoxic preconditioning increases

the protective effect of bone marrow mesenchymal stem cells on spinal

cord ischemia/reperfusion injury. Mol Med Rep. 2016;13:1953–60.

29. Liu YY, Chiang CH, Hung SC, Chian CF, Tsai CL, Chen WC, et al. Hypoxiapreconditioned mesenchymal stem cells ameliorate ischemia/reperfusioninduced lung injury. PLoS One. 2017;12:e0187637.

30. Zhang W, Liu L, Huo Y, Yang Y, Wang Y. Hypoxia-pretreated human MSCs

attenuate acute kidney injury through enhanced angiogenic and

antioxidative capacities. Biomed Res Int. 2014;2014:462472.

31. Ueno T, Nakashima A, Doi S, Kawamoto T, Honda K, Yokoyama Y, et al.

Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by

suppressing inflammation and inhibiting TGF-β1 signaling. Kidney Int. 2013;

84:297–307.

32. Furuhashi K, Tsuboi N, Shimizu A, Katsuno T, Kim H, Saka Y, et al. Serumstarved adipose-derived stromal cells ameliorate crescentic GN by

promoting immunoregulatory macrophages. J Am Soc Nephrol. 2013;24:

587–603.

33. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the

response to hypoxic stress. Mol Cell. 2010;40:294–309.

34. Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood

Rev. 2013;27:41–53.

35. Hayashi M, Sakata M, Takeda T, Yamamoto T, Okamoto Y, Sawada K, et al.

Induction of glucose transporter 1 expression through hypoxia-inducible

factor 1alpha under hypoxic conditions in trophoblast-derived cells. J

Endocrinol. 2004;183:145–54.

36. Zhang Y, Nakano D, Guan Y, Hitomi H, Uemura A, Masaki T, et al. A sodiumglucose cotransporter 2 inhibitor attenuates renal capillary injury and

fibrosis by a vascular endothelial growth factor-dependent pathway after

renal injury in mice. Kidney Int. 2018;94:524–35.

37. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common

pathway to end-stage renal failure. J Am Soc Nephrol. 2006;17:17–25.

38. Tanaka T, Matsumoto M, Inagi R, Miyata T, Kojima I, Ohse T, et al. Induction

of protective genes by cobalt ameliorates tubulointerstitial injury in the

progressive Thy1 nephritis. Kidney Int. 2005;68:2714–25.

39. Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ. Impaired

angiogenesis in the remnant kidney model: II. Vascular endothelial growth

factor administration reduces renal fibrosis and stabilizes renal function. J

Am Soc Nephrol. 2001;12:1448–57.

40. Yang J, Dai C, Liu Y. A novel mechanism by which hepatocyte growth

factor blocks tubular epithelial to mesenchymal transition. J Am Soc

Nephrol. 2005;16:68–78.

41. Tan R, Zhang X, Yang J, Li Y, Liu Y. Molecular basis for the cell type specific

induction of SnoN expression by hepatocyte growth factor. J Am Soc

Nephrol. 2007;18:2340–9.

42. Zhang Z, Yang C, Shen M, Yang M, Jin Z, Ding L, et al. Autophagy mediates

the beneficial effect of hypoxic preconditioning on bone marrow

mesenchymal stem cells for the therapy of myocardial infarction. Stem Cell

Res Ther. 2017;8:89.

43. Saad A, Zhu XY, Herrmann S, Hickson L, Tang H, Dietz AB, et al. Adiposederived mesenchymal stem cells from patients with atherosclerotic

renovascular disease have increased DNA damage and reduced angiogenesis

that can be modified by hypoxia. Stem Cell Res Ther. 2016;7:128.

44. Schive SW, Mirlashari MR, Hasvold G, Wang M, Josefsen D, Gullestad HP,

et al. Human adipose-derived mesenchymal stem cells respond to shortterm hypoxia by secreting factors beneficial for human islets in vitro and

potentiate antidiabetic effect in vivo. Cell Med. 2017;9:103–16.

Page 15 of 15

45. Schu S, Nosov M, O'Flynn L, Shaw G, Treacy O, Barry F, et al.

Immunogenicity of allogeneic mesenchymal stem cells. J Cell Mol Med.

2012;16:2094–103.

46. Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning

enhances cell survival and differentiation of stem cells during

transplantation in infarcted myocardium. Cardiovasc Res. 2008;77:134–42.

47. Herrmann JL, Wang Y, Abarbanell AM, Weil BR, Tan J, Meldrum DR.

Preconditioning mesenchymal stem cells with transforming growth factoralpha improves mesenchymal stem cell-mediated cardioprotection. Shock.

2010;33:24–30.

48. Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves

RM. Mesenchymal stromal cell secretome: influencing therapeutic potential by

cellular pre-conditioning. Front Immunol. 2018;9:2837.

49. Rafei M, Birman E, Forner K, Galipeau J. Allogeneic mesenchymal stem cells

for treatment of experimental autoimmune encephalomyelitis. Mol Ther.

2009;17:1799–803.

50. Montespan F, Deschaseaux F, Sensébé L, Carosella ED, Rouas-Freiss N.

Osteodifferentiated mesenchymal stem cells from bone marrow and

adipose tissue express HLA-G and display immunomodulatory properties in

HLA-mismatched settings: implications in bone repair therapy. J Immunol

Res. 2014;2014:230346.

51. Avivar-Valderas A, Martín-Martín C, Ramírez C, Del Río B, Menta R,

Mancheño-Corvo P, et al. Dissecting allo-sensitization after local

administration of human allogeneic adipose mesenchymal stem cells in

perianal fistulas of Crohn’s disease patients. Front Immunol. 2019;10:1244.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る