リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「蛋白質分子中の柔軟なループのコンホメーションを結晶コンタクトフリー空間を利用して解析:Tim 21を例として」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

蛋白質分子中の柔軟なループのコンホメーションを結晶コンタクトフリー空間を利用して解析:Tim 21を例として

斯琴巴拉 SIQINBALA スチンバラ 九州大学

2020.03.23

概要

In protein crystal, flexible loops are frequently deformed by crystal contacts, whereas in solution NMR, the large motions of flexible loops result in poor convergence. The correct three-dimensional structural information of protein molecules is vital for understanding their biochemical functions. We need an experimental technique to characterize the structural and dynamic properties of intrinsically flexible loops of protein molecules.

We designed an intended crystal contact-free space (CCFS) in protein crystals, and arranged the flexible loop of interest in the CCFS. The yeast Tim 21 protein was chosen as the model protein, because one of the loops (loop 2) is distorted by crystal contacts in the conventional crystal.

The intermembrane space fragment of the yeast Tim21 protein was fused to the MBP protein by a rigid α-helical linker. The space created between the two proteins was used as the CCFS. The linker length provides an adjustable freedom to arrange loop 2 in the CCFS. We determined the crystal structures of three MBP-Tim21 fusion proteins with different designs. Because the conformation of loop 2 in the best CCFS of three fusion proteins was distinct from it in the NMR structure reported in 2014, we re-determined the NMR structure of the yeast Tim21 and conducted MD simulations for comparison. Multidimensional scaling was used to visualize the structural similarity of loop 2. We found that the crystal contact-free conformation of loop 2 is located close to the centers of the loop 2 conformations’ ensembles in the new NMR and MD structures, respectively. We conclude that loop 2 of the yeast Tim21 in the best CCFS adopts a representative conformation in solution.

General significance of this article: No single powerful technique is available for the characterization of flexible structures in protein molecules. NMR analyses and MD simulations provide useful, but incomplete information. CCFS crystallography offers a third route to this goal.

この論文で使われている画像

参考文献

[1] M. Ikura, G.M. Clore, A.M. Gronenborn, G. Zhu, C.B. Klee, A. Bax, Solution structure of a calmodulin-target peptide complex by multidimensional NMR, Science, 256 (1992) 632-638.

[2] D.S. Carney, B.A. Davies, B.F. Horazdovsky, Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons, Trends Cell Biol, 16 (2006) 27-35.

[3] A.E. King, M.A. Ackley, C.E. Cass, J.D. Young, S.A. Baldwin, Nucleoside transporters: from scavengers to novel therapeutic targets, Trends Pharmacol Sci, 27 (2006) 416-425.

[4] K. Teilum, J.G. Olsen, B.B. Kragelund, Functional aspects of protein flexibility, Cell Mol Life Sci, 66 (2009) 2231-2247.

[5] F. Del Cano-Ochoa, A. Grande-Garcia, M. Reverte-Lopez, M. D'Abramo, S. Ramon-Maiques, Characterization of the catalytic flexible loop in the dihydroorotase domain of the human multi-enzymatic protein CAD, J Biol Chem, 293 (2018) 18903-18913.

[6] H. Zheng, K.B. Handing, M.D. Zimmerman, I.G. Shabalin, S.C. Almo, W. Minor, X-ray crystallography over the past decade for novel drug discovery - where are we heading next?, Expert Opin Drug Discov, 10 (2015) 975-989.

[7] H. Berman, K. Henrick, H. Nakamura, Announcing the worldwide Protein Data Bank, Nat Struct Biol, 10 (2003) 980.

[8] G.T. Robillard, C.E. Tarr, F. Vosman, H.J. Berendsen, Similarity of the crystal and solution structure of yeast tRNAPhe, Nature, 262 (1976) 363-369.

[9] G. Williams, N.J. Clayden, G.R. Moore, R.J. Williams, Comparison of the solution and crystal structures of mitochondrial cytochrome c. Analysis of paramagnetic shifts in the nuclear magnetic resonance spectrum of ferricytochrome c, J Mol Biol, 183 (1985) 447-460.

[10] M. Billeter, A.D. Kline, W. Braun, R. Huber, K. Wuthrich, Comparison of the high-resolution structures of the alpha-amylase inhibitor tendamistat determined by nuclear magnetic resonance in solution and by X-ray diffraction in single crystals, J Mol Biol, 206 (1989) 677-687.

[11] M. Billeter, Comparison of protein structures determined by NMR in solution and by X-ray diffraction in single crystals, Q Rev Biophys, 25 (1992) 325-377.

[12] M. Billeter, J. Vendrell, G. Wider, F.X. Aviles, M. Coll, A. Guasch, R. Huber, K. Wuthrich, Comparison of the NMR solution structure with the X-ray crystal structure of the activation domain from procarboxypeptidase B, J Biomol NMR, 2 (1992) 1-10.

[13] F.J. Blanco, A.R. Ortiz, L. Serrano, 1H and 15N NMR assignment and solution structure of the SH3 domain of spectrin: comparison of unrefined and refined structure sets with the crystal structure, J Biomol NMR, 9 (1997) 347-357.

[14] B. Mohanty, P. Serrano, B. Pedrini, K. Jaudzems, M. Geralt, R. Horst, T. Herrmann, M.A. Elsliger, I.A. Wilson, K. Wuthrich, Comparison of NMR and crystal structures for the proteins TM1112 and TM1367, Acta Crystallogr Sect F Struct Biol Cryst Commun, 66 (2010) 1381-1392.

[15] J.J. Birktoft, G. Rhodes, L.J. Banaszak, Refined crystal structure of cytoplasmic malate dehydrogenase at 2.5-A resolution, Biochemistry, 28 (1989) 6065-6081.

[16] S.M. Pascal, T.A. Cross, Polypeptide conformational space. Dynamics by solution NMR disorder by X-ray crystallography, J Mol Biol, 241 (1994) 431-439.

[17] C.S. Rapp, R.M. Pollack, Crystal packing effects on protein loops, Proteins, 60 (2005) 103-109.

[18] E. Eyal, S. Gerzon, V. Potapov, M. Edelman, V. Sobolev, The limit of accuracy of protein modeling: influence of crystal packing on protein structure, J Mol Biol, 351 (2005) 431-442.

[19] W.F. Vranken, NMR structure validation in relation to dynamics and structure determination, Prog Nucl Magn Reson Spectrosc, 82 (2014) 27-38.

[20] S.A. Hollingsworth, R.O. Dror, Molecular Dynamics Simulation for All, Neuron, 99 (2018) 1129-1143.

[21] D. Song, R. Luo, H.F. Chen, The IDP-Specific Force Field ff14IDPSFF Improves the Conformer Sampling of Intrinsically Disordered Proteins, J Chem Inf Model, 57 (2017) 1166-1178.

[22] E. Nwanochie, V.N. Uversky, Structure Determination by Single-Particle Cryo-Electron Microscopy: Only the Sky (and Intrinsic Disorder) is the Limit, Int J Mol Sci, 20 (2019).

[23] R. Matsuoka, A. Shimada, Y. Komuro, Y. Sugita, D. Kohda, Rational design of crystal contact-free space in protein crystals for analyzing spatial distribution of motions within protein molecules, Protein Sci, 25 (2016) 754-768.

[24] D. Mokranjac, D. Popov-Celeketic, K. Hell, W. Neupert, Role of Tim21 in mitochondrial translocation contact sites, J Biol Chem, 280 (2005) 23437-23440.

[25] J. Song, Y. Tamura, T. Yoshihisa, T. Endo, A novel import route for an N-anchor mitochondrial outer membrane protein aided by the TIM23 complex, EMBO Rep, 15 (2014) 670-677.

[26] M. Sinzel, T. Tan, P. Wendling, H. Kalbacher, C. Ozbalci, X. Chelius, B. Westermann, B. Brugger, D. Rapaport, K.S. Dimmer, Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMP-dependent biogenesis pathway, EMBO Rep, 17 (2016) 965-981.

[27] A. Chacinska, M. Lind, A.E. Frazier, J. Dudek, C. Meisinger, A. Geissler, A. Sickmann, H.E. Meyer, K.N. Truscott, B. Guiard, N. Pfanner, P. Rehling, Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17, Cell, 120 (2005) 817-829.

[28] R. Albrecht, P. Rehling, A. Chacinska, J. Brix, S.A. Cadamuro, R. Volkmer, B. Guiard, N. Pfanner, K. Zeth, The Tim21 binding domain connects the preprotein translocases of both mitochondrial membranes, EMBO Rep, 7 (2006) 1233-1238.

[29] R. Bajaj, L. Jaremko, M. Jaremko, S. Becker, M. Zweckstetter, Molecular basis of the dynamic structure of the TIM23 complex in the mitochondrial intermembrane space, Structure, 22 (2014) 1501-1511.

[30] A. Srivastava, S. Bala, H. Motomura, D. Kohda, F. Tama, O. Miyashita, Conformational ensemble of an intrinsically flexible loop in mitochondrial import protein Tim21 studied by modeling and molecular dynamics simulations, Biochim Biophys Acta Gen Subj, (2019) 129417.

[31] S. Marqusee, V.H. Robbins, R.L. Baldwin, Unusually stable helix formation in short alanine-based peptides, Proc Natl Acad Sci U S A, 86 (1989) 5286-5290.

[32] Z. Otwinowski, W. Minor, [20] Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol, 276 (1997) 307-326.

[33] W. Kabsch, Xds, Acta Crystallogr D Biol Crystallogr, 66 (2010) 125-132.

[34] P.D. Adams, P.V. Afonine, G. Bunkoczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.W. Hung, G.J. Kapral, R.W. Grosse-Kunstleve, A.J. McCoy, N.W. Moriarty, R. Oeffner, R.J. Read, D.C. Richardson, J.S. Richardson, T.C. Terwilliger, P.H. Zwart, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr D Biol Crystallogr, 66 (2010) 213-221.

[35] F.A. Quiocho, J.C. Spurlino, L.E. Rodseth, Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor, Structure, 5 (1997) 997-1015.

[36] P.G. Telmer, B.H. Shilton, Insights into the conformational equilibria of maltose-binding protein by analysis of high affinity mutants, J Biol Chem, 278 (2003) 34555-34567.

[37] P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr D Biol Crystallogr, 60 (2004) 2126-2132.

[38] P. Emsley, B. Lohkamp, W.G. Scott, K. Cowtan, Features and development of Coot, Acta Crystallogr D Biol Crystallogr, 66 (2010) 486-501.

[39] S. Parthasarathy, M.R. Murthy, Analysis of temperature factor distribution in high-resolution protein structures, Protein Sci, 6 (1997) 2561-2567.

[40] L.E. Kay, D.A. Torchia, A. Bax, Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease, Biochemistry, 28 (1989) 8972-8979.

[41] F. Delaglio, S. Grzesiek, G.W. Vuister, G. Zhu, J. Pfeifer, A. Bax, NMRPipe: a multidimensional spectral processing system based on UNIX pipes, J Biomol NMR, 6 (1995) 277-293.

[42] D.S. Wishart, C.G. Bigam, A. Holm, R.S. Hodges, B.D. Sykes, 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects, J Biomol NMR, 5 (1995) 67-81.

[43] B.A. Johnson, Using NMRView to visualize and analyze the NMR spectra of macromolecules, Methods Mol Biol, 278 (2004) 313-352.

[44] N. Kobayashi, Y. Harano, N. Tochio, E. Nakatani, T. Kigawa, S. Yokoyama, S. Mading, E.L. Ulrich, J.L. Markley, H. Akutsu, T. Fujiwara, An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database, J Biomol NMR, 53 (2012) 311-320.

[45] N. Kobayashi, Y. Hattori, T. Nagata, S. Shinya, P. Guntert, C. Kojima, T. Fujiwara, Noise peak filtering in multi-dimensional NMR spectra using convolutional neural networks, Bioinformatics, 34 (2018) 4300-4301.

[46] E. Schmidt, P. Guntert, A new algorithm for reliable and general NMR resonance assignment, J Am Chem Soc, 134 (2012) 12817-12829.

[47] P. Guntert, Automated NMR structure calculation with CYANA, Methods Mol Biol, 278 (2004) 353-378.

[48] Y. Shen, F. Delaglio, G. Cornilescu, A. Bax, TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts, J Biomol NMR, 44 (2009) 213-223.

[49] C.D. Schwieters, J.J. Kuszewski, N. Tjandra, G.M. Clore, The Xplor-NIH NMR molecular structure determination package, J Magn Reson, 160 (2003) 65-73.

[50] R.A. Laskowski, J.A. Rullmannn, M.W. MacArthur, R. Kaptein, J.M. Thornton, AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR, J Biomol NMR, 8 (1996) 477-486.

[51] N. Kobayashi, A robust method for quantitative identification of ordered cores in an ensemble of biomolecular structures by non-linear multi-dimensional scaling using inter-atomic distance variance matrix, J Biomol NMR, 58 (2014) 61-67.

[52] M. Rückert, G. Otting, Alignment of Biological Macromolecules in Novel Nonionic Liquid Crystalline Media for NMR Experiments, Journal of the American Chemical Society, 122 (2000) 7793-7797.

[53] M. Ottiger, F. Delaglio, A. Bax, Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra, J Magn Reson, 131 (1998) 373-378.

[54] M. Zweckstetter, NMR: prediction of molecular alignment from structure using the PALES software, Nat Protoc, 3 (2008) 679-690.

[55] K. Chen, N. Tjandra, The use of residual dipolar coupling in studying proteins by NMR, Top Curr Chem, 326 (2012) 47-67.

[56] B. Webb, A. Sali, Comparative Protein Structure Modeling Using MODELLER, Curr Protoc Bioinformatics, 54 (2016) 5 6 1-5 6 37.

[57] M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1 (2015) 19-25.

[58] J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, C. Simmerling, ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB, J Chem Theory Comput, 11 (2015) 3696-3713.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る