リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Generalized Cousin-I condition and intermediate pseudoconvexity in a Stein manifold」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Generalized Cousin-I condition and intermediate pseudoconvexity in a Stein manifold

杉山 俊 広島大学

2020.03.23

概要

According to the well-known theorem of Cartan-Behnke-Stein [4, 6], every Cousin-I open subset of
C2 is Stein. Here, an open set D in an n-dimensional Stein manifold X is said to be Cousin-I if
any additive Cousin problem has a solution. This condition is equivalent to the injectivity of the
canonical map H 1 (D, O) → H 1 (D, M), where M denotes the sheaf of all germs of meromorphic
functions on D (see Grauert–Remmert [11, p. 137]).
On the other hand, there is an intermediate geometric notion which generalizes pseudoconvexity.
An open set D in an n-dimensional complex manifold X is said to be pseudoconvex of order n − q,
where 1 ≤ q ≤ n, if its complement X \ D has the same continuity as an analytic set of pure
dimension n − q.
The object of this paper is to generalize Cousin-I condition and describe its relation to pseudoconvexity of order n − q. Precisely, we prove that an open set D in an n-dimensional Stein manifold
X is pseudoconvex of order 1 if the canonical map H n−1 (D, O) → H n−1 (D, M) is injective (Theorem 5.1). In the case where n = 2, this result is nothing but the theorem of Cartan-Behnke-Stein
for an open set D in a Stein manifold X of dimension two (see Kajiwara–Kazama [13, Corollary 3]
and Berg [5, Corollary]). Moreover we introduce a new proof of theorem of Eastwood–Vigna Suria. ...

参考文献

[1] M. Abe, Holomorphic line bundles and divisors on a domain of a Stein manifold, Ann. Sc.

Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 2, 323–330.

[2] M. Abe, Open sets which satisfy the Oka-Grauert principle in a Stein space, Ann. Mat. Pura

Appl. (4) 190 (2011), no. 4, 703–723.

[3] A. Andreotti and H. Grauert, Th´eor`emes de finitude pour la cohomologie des espaces

complexes, Bull. Soc. Math. France 90 (1962), 193–259.

[4] H. Behnke and K. Stein, Analytische Funktionen mehrerer Ver¨anderlichen zu vorgegebenen

Null- und Polstellenfl¨

achen, Jahresber. Deutsch. Math.-Verein. 47 (1937), 177–192.

[5] G. Berg, Complex spaces with plenty of Stein subvarieties, Math. Scand. 51 (1982), no. 1,

158–162.

[6] H. Cartan, Les probl`emes de Poincar´e et de Cousin pour les fonctions de plusieurs variables

complexes, C. R. Acad. Sci. Paris. 199 (1934), 1284–1287.

[7] G. M. Eastwood and G. Vigna Suria, Cohomologically complete and pseudoconvex domains, Comment. Math. Helv. 55 (1980), 413–426.

[8] K. Fritzsche and H. Grauert, From holomorphic functions to complex manifolds, Grad.

Texts in Math.213, Springer, New York, 2002.

[9] O. Fujita, Domaines pseudoconvexes d’ordre g´en´eral et fonctions pseudoconvexes d’ordre

g´en´eral, J. Math. Kyoto Univ. 30 (1990), no. 4, 637–649.

[10] O. Fujita, On the equivalence of the q-plurisubharmonic functions and the pseudoconvex functions of general order, Annual Reports of Graduate School of Human Culture, Nara Woman’s

Univ. 7 (1991), 77–81.

[11] H. Grauert and R. Remmert, Theory of Stein Spaces, Grundl. Math. Wiss. vol.236.

Springer, Berlin, 1979.

[12] M. Jarnicki and P. Pflug, Extension of Holomorphic Functions. Walter de Gruyter, Berlin,

2000.

[13] J. Kajiwara and H. Kazama, Two dimensional complex manifold with vanishing cohomology set, Math. Ann. 204 (1973), 1–12.

[14] K. Matsumoto, Pseudoconvex domains of general order in Stein manifolds, Mem. Fac. Sci.

Kyushu Univ. Ser. A. 43 (1989), no. 2, 67–76.

17

[15] Y. Mori, A complex manifold with vanishing cohomology sets, Mem. Fac. Sci. Kyushu Univ.

Ser. A. 26 (1972), no. 2, 179–191.

[16] T. Pawlaschyk and E. S. Zeron, On convex hulls and pseudoconvex domains generated

by q-plurisubharmonic functions, part I, J. Math. Anal. Appl. 408 (2013), no. 1, 394–408.

[17] S. Sugiyama, Polynomials and pseudoconvexity for Riemann domains over Cn , Toyama Math.

J. 38 (2016), 101–114.

[18] S. Sugiyama, Generalized Cartan-Behnke-Stein’s theorem and q-pseudoconvexity in a Stein

manifold, Tohoku. Math. J. (2) to appear.

[19] M. Tadokoro, Sur les ensembles pseudoconcaves g´en´eraux, J. Math. Soc. Japan. 17 (1965),

281–290.

[20] K. Watanabe, Pseudoconvex domains of general order and vanishing cohomology, Kobe J.

Math. 10 (1993), no. 1, 107–115.

[21] T. Yasuoka, Polynomials and pseudoconvexity, Math. Sem. Notes Kobe Univ. 11 (1983), no.

1, 139–148.

18

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る