リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phase diagram of q-deformed Yang-Mills theory on S-2 at non-zero theta-angle」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phase diagram of q-deformed Yang-Mills theory on S-2 at non-zero theta-angle

Okuyama, Kazumi 信州大学 DOI:10.1007/JHEP04(2018)059

2021.02.15

概要

We study the phase diagram of q-deformed Yang-Mills theory on S-2 at non-zero theta-angle using the exact partition function at finite N. By evaluating the exact partition function numerically, we find evidence for the existence of a series of phase transitions at non-zero theta-angle as conjectured in [hep-th/0509004].

この論文で使われている画像

参考文献

[1] C.G. Callan Jr., R.F. Dashen and D.J. Gross, The structure of the gauge theory vacuum,

Phys. Lett. B 63 (1976) 334 [INSPIRE].

[2] S.R. Coleman, More about the massive Schwinger model, Annals Phys. 101 (1976) 239

[INSPIRE].

[3] A. D’Adda, M. L¨

uscher and P. Di Vecchia, A 1/n expandable series of nonlinear σ-models

with instantons, Nucl. Phys. B 146 (1978) 63 [INSPIRE].

– 20 –

JHEP04(2018)059

that the 1-instanton term Z1 = ξ Tr M reduces to the ordinary Laguerre polynomial in

the limit (3.17). More generally, we observed that the characteristic polynomial of M

f in (3.19) in this limit (3.18). However, at present it is not

in (3.9) reduces to that of M

clear to us how the instanton correction in qYM is related to the standard definition of

q-Laguerre polynomials, also known as the generalized Stieltjes-Wigert polynomials (see

e.g. [38]). Understanding such a relation could be a key towards an analytic proof of

the conjectured form of M in (3.9). Also, it is important to find the analytic form of

the instanton prefactor fk (t, gs ) in the q-deformed case which plays an important role for

the phase diagram at non-zero θ. We observed numerically that only the anti-symmetric

representations of instantons are relevant and other representations are suppressed in the

large N limit (4.6), as conjectured in [6]. It would be interesting to understand the physical

origin of this phenomenon. It would also be important to understand the implication of

this phase structure for the black hole physics. According to [18, 19] the coefficient Ω(m)

in (2.33) is related to the black hole entropy, and it would be very interesting to study

its large N behavior. It is argued in [19, 39, 40] that the non-perturbative O(e−N ) effect

is responsible for the failure of chiral factorization of partition function and it has an

interesting consequence in the dual spacetime picture. It would be very interesting to

study such O(e−N ) effects in the q-deformed Yang-Mills theory from the viewpoint of

resurgence, in a similar manner as the GWW model studied in [11, 13]. Some progress

in this direction for the 2d Yang-Mills theory on a torus will be reported elsewhere [41].

Also, we expect that the chiral partition function of qYM receives “membrane instanton

corrections” given by the Nekrasov-Shatashvili limit of the refined topological string on

Xp from the general argument in [10]. Note that it was shown in [42] that the refined

topological string on Xp is related to a two parameter (q, t)-deformation of 2d Yang-Mills

theory and the large N phase structure of (q, t)-deformed 2d Yang-Mills on S 2 was studied

in [43]. It would be very interesting to investigate this direction further.

[4] E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159

[hep-th/9301042] [INSPIRE].

[5] D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal and

temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

[6] D. Jafferis and J. Marsano, A DK phase transition in q-deformed Yang-Mills on S 2 and

topological strings, hep-th/0509004 [INSPIRE].

[7] Y. Hatsuda, S. Moriyama and K. Okuyama, Exact results on the ABJM Fermi gas, JHEP

10 (2012) 020 [arXiv:1207.4283] [INSPIRE].

[9] Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton bound states in ABJM theory, JHEP

05 (2013) 054 [arXiv:1301.5184] [INSPIRE].

[10] Y. Hatsuda, M. Mari˜

no, S. Moriyama and K. Okuyama, Non-perturbative effects and the

refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].

[11] M. Mari˜

no, Nonperturbative effects and nonperturbative definitions in matrix models and

topological strings, JHEP 12 (2008) 114 [arXiv:0805.3033] [INSPIRE].

[12] K. Okuyama, Wilson loops in unitary matrix models at finite N , JHEP 07 (2017) 030

[arXiv:1705.06542] [INSPIRE].

[13] A. Ahmed and G.V. Dunne, Transmutation of a trans-series: the Gross-Witten-Wadia phase

transition, JHEP 11 (2017) 054 [arXiv:1710.01812] [INSPIRE].

[14] X. Arsiwalla, R. Boels, M. Mari˜

no and A. Sinkovics, Phase transitions in q-deformed 2D

Yang-Mills theory and topological strings, Phys. Rev. D 73 (2006) 026005 [hep-th/0509002]

[INSPIRE].

[15] N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti, D. Seminara and R.J. Szabo, Topological

strings and large N phase transitions. I. Nonchiral expansion of q-deformed Yang-Mills

theory, JHEP 01 (2006) 035 [hep-th/0509041] [INSPIRE].

[16] M.R. Douglas and V.A. Kazakov, Large N phase transition in continuum QCD in

two-dimensions, Phys. Lett. B 319 (1993) 219 [hep-th/9305047] [INSPIRE].

[17] D.J. Gross and A. Matytsin, Instanton induced large N phase transitions in two-dimensional

and four-dimensional QCD, Nucl. Phys. B 429 (1994) 50 [hep-th/9404004] [INSPIRE].

[18] M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, Black holes, q-deformed 2d Yang-Mills and

non-perturbative topological strings, Nucl. Phys. B 715 (2005) 304 [hep-th/0411280]

[INSPIRE].

[19] C. Vafa, Two dimensional Yang-Mills, black holes and topological strings, hep-th/0406058

[INSPIRE].

[20] H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys.

Rev. D 70 (2004) 106007 [hep-th/0405146] [INSPIRE].

[21] A.A. Migdal, Recursion equations in gauge theories, Sov. Phys. JETP 42 (1975) 413 [Zh.

Eksp. Teor. Fiz. 69 (1975) 810] [INSPIRE].

[22] D.J. Gross and E. Witten, Possible third order phase transition in the large N lattice gauge

theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].

[23] S.R. Wadia, A study of U(N ) lattice gauge theory in 2-dimensions, arXiv:1212.2906

[INSPIRE].

– 21 –

JHEP04(2018)059

[8] Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton effects in ABJM theory from Fermi

gas approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].

[24] D.J. Gross, Two-dimensional QCD as a string theory, Nucl. Phys. B 400 (1993) 161

[hep-th/9212149] [INSPIRE].

[25] D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400

(1993) 181 [hep-th/9301068] [INSPIRE].

[26] D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional

QCD, Nucl. Phys. B 403 (1993) 395 [hep-th/9303046] [INSPIRE].

[27] N. Caporaso, L. Griguolo, M. Mari˜

no, S. Pasquetti and D. Seminara, Phase transitions,

double-scaling limit and topological strings, Phys. Rev. D 75 (2007) 046004

[hep-th/0606120] [INSPIRE].

[29] B. Forbes and M. Jinzenji, Local mirror symmetry of curves: Yukawa couplings and genus 1,

Adv. Theor. Math. Phys. 11 (2007) 175 [math.AG/0609016] [INSPIRE].

[30] E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303

[hep-th/9204083] [INSPIRE].

[31] E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys. 141 (1991)

153 [INSPIRE].

[32] M. Mari˜

no, Les Houches lectures on matrix models and topological strings,

CERN-PH-TH-2004-199, (2004) [hep-th/0410165] [INSPIRE].

[33] P.V. Buividovich, G.V. Dunne and S.N. Valgushev, Complex path integrals and saddles in

two-dimensional gauge theory, Phys. Rev. Lett. 116 (2016) 132001 [arXiv:1512.09021]

[INSPIRE].

[34] S. Giombi and V. Pestun, The 1/2 BPS ’t Hooft loops in N = 4 SYM as instantons in 2d

Yang-Mills, J. Phys. A 46 (2013) 095402 [arXiv:0909.4272] [INSPIRE].

[35] B. Fiol and G. Torrents, Exact results for Wilson loops in arbitrary representations, JHEP

01 (2014) 020 [arXiv:1311.2058] [INSPIRE].

[36] E. Witten, Theta dependence in the large N limit of four-dimensional gauge theories, Phys.

Rev. Lett. 81 (1998) 2862 [hep-th/9807109] [INSPIRE].

[37] Digital Library of Mathematical Functions (DLMF) eq. (18.15.22),

http://dlmf.nist.gov/18.15.

[38] Digital Library of Mathematical Functions (DLMF) eq. (18.27.15),

http://dlmf.nist.gov/18.27.

[39] R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby universes in string theory, Phys.

Rev. D 73 (2006) 066002 [hep-th/0504221] [INSPIRE].

[40] M. Aganagic, H. Ooguri and T. Okuda, Quantum entanglement of baby universes, Nucl.

Phys. B 778 (2007) 36 [hep-th/0612067] [INSPIRE].

[41] K. Okuyama and K. Sakai, work in progress.

[42] M. Aganagic and K. Schaeffer, Refined black hole ensembles and topological strings, JHEP

01 (2013) 060 [arXiv:1210.1865] [INSPIRE].

[43] Z. K¨

ok´enyesi, A. Sinkovics and R.J. Szabo, Refined Chern-Simons theory and (q, t)-deformed

Yang-Mills theory: semi-classical expansion and planar limit, JHEP 10 (2013) 067

[arXiv:1306.1707] [INSPIRE].

– 22 –

JHEP04(2018)059

[28] N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti, D. Seminara and R.J. Szabo, Topological

strings and large N phase transitions. II. Chiral expansion of q-deformed Yang-Mills theory,

JHEP 01 (2006) 036 [hep-th/0511043] [INSPIRE].

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る