リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「周波数変調原子間力顕微鏡(FM-AFM)を用いた酸化チタン表面の液中観察」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

周波数変調原子間力顕微鏡(FM-AFM)を用いた酸化チタン表面の液中観察

Xue, Shengkai 神戸大学

2020.03.25

概要

The solids, solutions and gases around us are in contact with each other. The Different phases meets together is the ‘interface’. The solid surface contacted with liquid, where there is a liquid-solid interface.

The liquid-solid interface is a particularly important place of chemical reaction. For example, catalytic reaction in liquid is reaction on the solid surface. Controlling the interface of liquid-solid can control the progress of the reaction. Corrosion is also a solid-liquid interface reaction [1]. Corrosion can be prevented by reducing this reaction rate. Hydrophilic and hydrophobic treatment of the surface is also a study of liquid- solid interface. This is a hot topic in materials science. Furthermore, biological cell membranes are solid-liquid interfaces that serve as entrances and exits for the exchange of substances and energy between the inside and outside of cells [2].

Liquid and solids consist of atoms or molecules. To understand and control the reactions at the liquid-solid interface, the atomic knowledge of the liquid-solid interface is necessary. Titanium oxide (TiO2) surface is a topic that lots of people has paid attention to it in the past 40 years. Water-TiO2 interface also has been concerned. However, the research of water-TiO2 interface with atomic level is scarce. In this paper, the author focused on the water-TiO2 interface with frequency-modulation atomic force microscopy. That is a new method which is enables to directly observe the solid-liquid interface at atomic level.

この論文で使われている画像

参考文献

1. Cimatu K, Baldelli S. Chemical Imaging of Corrosion: Sum Frequency Generation Imaging Microscopy of Cyanide on Gold at the Solid− Liquid Interface. Journal of the American Chemical Society, 2008, 130, 8030-8037.

2. Tero R, Suda Y, Kato R, Kato R, Tanoue H, Takikawa H. Plasma irradiation of artificial cell membrane system at solid–liquid interface. Applied Physics Express, 2014, 7, 077001.

3. Date M, Haruta M. Moisture effect on CO oxidation over Au/TiO2 catalyst. Journal of Catalysis, 2001, 201, 221-224.

4. Ball M R, Wesley T S, Rivera-Dones K R, Huber G W, Dumesic J A. Amination of 1-hexanol on bimetallic AuPd/TiO2 catalysts. Green Chemistry, 2018, 20, 4695- 4709.

5. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37-38.

6. Ge H, Xu F, Cheng B, Yu J, Ho W. S‐scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2‐production photocatalyst. ChemCatChem, 2019.

7. O'regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737.

8. Mills A, Davies R H, Worsley D. Water purification by semiconductor photocatalysis. Chemical Society Reviews, 1993, 22, 417-425.

9. Brahmachari G, Das S. A simple and straightforward method for one-pot synthesis of 2, 4, 5-triarylimidazoles using titanium dioxide as an eco-friendly and recyclable catalyst under solvent-free conditions. NISCAIR-CSIR,2013, 0376-4699.

10. Ruiz A M, Sakai G, Cornet A, Shimanoe K, Morante J R, Yamazoe N. Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sensors and Actuators B: Chemical, 2003, 93, 509-518.

11. Karunagaran B, Uthirakumar P, Chung S J, Velumani S, Suh E.-K. TiO2 thin film gas sensor for monitoring ammonia. Materials Characterization, 2007, 58, 680-684.

12. Ramamoorthy M, Vanderbilt D, King-Smith R D. First-principles calculations of the energetics of stoichiometric TiO2 surfaces. Physical Review B, 1994, 49, 16721.

13. Diebold U, Lehman J, Mahmoud T, Kuhna M, Leonardelli G, Hebenstreit W, Schmid M, Varga P. Intrinsic defects on a TiO2(110) (1× 1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surface science, 1998, 411, 137-153.

14. Chen D A, Bartelt M C, Hwang R Q, McCarty K.F. Self-limiting growth of copper islands on TiO2 (110)-(1× 1). Surface Science, 2000, 450: 78-97.

15. Sasahara A, Pang C L, Onishi H. STM observation of a ruthenium dye adsorbed on a TiO2 (110) surface. The Journal of Physical Chemistry B, 2006, 110: 4751-4755.

16. Onishi H, Iwasawa Y. Reconstruction of TiO2(110) surface: STM study with atomic-scale resolution. Surface Science, 1994, 313, L783-L789.

17. Onishi H, Iwasawa Y. STM-imaging of formate intermediates adsorbed on a TiO2 (110) surface. Chemical Physics Letters, 1994, 226, 111-114.

18. Fukui K, Onishi H, Iwasawa Y. Atom-resolved image of the TiO2 (110) surface by noncontact atomic force microscopy, Physical Review Letters, 1997, 79, 4202.

19. Fukuma T, Kobayashi K, Matsushige K, Yamada H. True atomic resolution in liquid by frequency-modulation atomic force microscopy. Applied Physics Letters, 2005, 87, 034101.

20. Hiasa T, Kimura K, Onishi H, Ohta M, Watanabe K, Kokawa R, Oyabu N, Kobayashi K, Yamada H. Solution–TiO2 interface probed by frequency-modulation atomic force microscopy. Japanese Journal of Applied Physics, 2009, 48, 08JB19.

21. Sasahara A, Tomitori M. Frequency modulation atomic force microscope observation of TiO2 (110) surfaces in water. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28, C4C5-C4C10.

22. Serrano G, Bonanni B, Di Giovannantonio M, Kosmala T, Schmid M, Diebold U, Carlo A D, Cheng J, VandeVondele J, Wandelt K, Geletti C. Molecular ordering at the interface between liquid water and rutile TiO2(110). Advanced Materials Interfaces, 2015, 2, 1500246.

23. Zhang Z, Fenter P, Sturchio N C, Bedzyk M J, Machesky M L, Wesolowski D.J. Structure of rutile TiO2(110) in water and 1 molal Rb+ at pH 12: Inter-relationship among surface charge, interfacial hydration structure, and substrate structural displacements. Surface Science, 2007, 601, 1129-1143.

24. Kataoka S, Gurau M C, Albertorio F, Holden M A, Lim S, Yang R D, Cremer P S. Investigation of water structure at the TiO2/aqueous interface. Langmuir, 2004, 20, 1662-1666.

25. chlegel S J, Hosseinpour S, Gebhard M, Devi A, Bonn M, Backus E H.G. How water flips at charged titanium dioxide: an SFG-study on the water–TiO2 interface. Physical Chemistry Chemical Physics, 2019, 21, 8956-8964.

26. Binnig G, Rohrer H, Gerber C, Weibei E. 7× 7 reconstruction on Si (111) resolved in real space. Physical Review Letters, 1983, 50, 120.

27. Binnig G, Gerber C, Stoll E, Albrecht T R, Quate C F. Atomic resolution with atomic force microscope. Europhysics Letters, 1987, 3, 1281.

28. Albrecht T R, Grütter P, Horne D, Rugar D. Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity. Journal of Applied Physics, 1991, 69, 668-673.

29. Gießibl F J. A direct method to calculate tip–sample forces from frequency shifts in frequency-modulation atomic force microscopy. Applied Physics Letters, 2001, 78, 123-125.

30. Sader J E, Jarvis S P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Applied Physics Letters, 2004, 84, 1801- 1803.

31. Crist B V, Crisst D B V. Handbook of monochromatic XPS spectra. New York: Wiley, 2000.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る