リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Activation of plant immunity by exposure to dinitrogen pentoxide gas generated from air using plasma technology」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Activation of plant immunity by exposure to dinitrogen pentoxide gas generated from air using plasma technology

Daiki Tsukidate Keisuke Takashima Shota Sasaki Shuhei Miyashita Toshiro Kaneko Hideki Takahashi Sugihiro Ando 東北大学 DOI:10.1371/journal.pone.0269863

2022.06.24

概要

Reactive nitrogen species (RNS) play an important role in plant immunity as signaling factors. We previously developed a plasma technology to partially convert air molecules into dinitrogen pentoxide (N2O5), an RNS whose physiological action is poorly understood. To reveal the function of N2O5 gas in plant immunity, Arabidopsis thaliana was exposed to plasma-generated N2O5 gas once (20 s) per day for 3 days, and inoculated with Botrytis cinerea, Pseudomonas syringae pv. tomato DC3000 (Pst), or cucumber mosaic virus strain yellow (CMV(Y)) at 24 h after the final N2O5 gas exposure. Lesion size with B. cinerea infection was significantly (P < 0.05) reduced by exposure to N2O5 gas. Propagation of CMV(Y) was suppressed in plants exposed to N2O5 gas compared with plants exposed to the air control. However, proliferation of Pst in the N2O5-gas-exposed plants was almost the same as in the air control plants. These results suggested that N2O5 gas exposure could control plant disease depending on the type of pathogen. Furthermore, changes in gene expression at 24 h after the final N2O5 gas exposure were analyzed by RNA-Seq. Based on the gene ontology analysis, jasmonic acid and ethylene signaling pathways were activated by exposure of Arabidopsis plants to N2O5 gas. A time course experiment with qRT-PCR revealed that the mRNA expression of the transcription factor genes, WRKY25, WRKY26, WRKY33, and genes for tryptophan metabolic enzymes, CYP71A12, CYP71A13, PEN2, and PAD3, was transiently induced by exposure to N2O5 gas once for 20 s peaking at 1–3 h post-exposure. However, the expression of PDF1.2 was enhanced beginning from 6 h after exposure and its high expression was maintained until 24–48 h later. Thus, enhanced tryptophan metabolism leading to the synthesis of antimicrobial substances such as camalexin and antimicrobial peptides might have contributed to the N2O5-gas-induced disease resistance.

この論文で使われている画像

参考文献

1. Lykogianni M, Bempelou E, Karamaouna F, Aliferis KA. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci Total Environ. 2021; 795: 148625. https://doi.org/10.1016/j.scitotenv.2021.148625 PMID: 34247073

2. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: A review. Spectrochim Acta—Part B At Spectrosc. 2006; 61: 2–30. https://doi.org/10.1016/j.sab.2005.10.003

3. Kaneko T, Kato H, Yamada H, Yamamoto M, Yoshida T, Attri P, et al. Functional nitrogen science based on plasma processing: quantum devices, photocatalysts and activation of plant defense and immune systems. Jpn J Appl Phys. 2022; 61: SA0805. https://doi.org/10.35848/1347-4065/ac25dc

4. Adhikari B, Pangomm K, Veerana M, Mitra S, Park G. Plant disease control by non-thermal atmospheric-pressure plasma. Front Plant Sci. 2020; 11: Article 77. https://doi.org/10.3389/fpls.2020.00077 PMID: 32117403

5. Takashima K, Kaneko T. Ozone and dinitrogen monoxide production in atmospheric pressure air dielectric barrier discharge plasma effluent generated by nanosecond pulse superimposed alternating current voltage. Plasma Sources Sci Technol. 2017; 26: 065018. https://doi.org/10.1088/1361-6595/aa7082

6. Sasaki S, Takashima K, Kaneko T. Portable plasma device for electric N2O5 production from air. Ind Eng Chem Res. 2021; 60: 798–801. https://doi.org/10.1021/acs.iecr.0c04915

7. Misra NN, Pankaj SK, Segat A, Ishikawa K. Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol. 2016; 55: 39–47. https://doi.org/10.1016/j.tifs.2016.07.001

8. Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014; 65: 1229– 1240. https://doi.org/10.1093/jxb/ert375 PMID: 24253197

9. Yu M, Lamattina L, Spoel SH, Loake GJ. Nitric oxide function in plant biology: A redox cue in deconvolution. New Phytol. 2014; 202: 1142–1156. https://doi.org/10.1111/nph.12739 PMID: 24611485

10. Bellin D, Asai S, Delledonne M, Yoshioka H. Nitric oxide as a mediator for defense responses. Mol Plant-Microbe Interact. 2013; 26: 271–277. https://doi.org/10.1094/MPMI-09-12-0214-CR PMID: 23151172

11. Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 2004. pp. 373–399. https://doi.org/10.1146/annurev.arplant.55.031903. 141701 PMID: 15377225

12. Gaupels F, Kuruthukulangarakoola GT, Durner J. Upstream and downstream signals of nitric oxide in pathogen defence. Curr Opin Plant Biol. 2011; 14: 707–714. https://doi.org/10.1016/j.pbi.2011.07.005 PMID: 21816662

13. Mur LAJ, Hebelstrup KH, Gupta KJ. Striking a balance: does nitrate uptake and metabolism regulate both NO generation and scavenging? Front Plant Sci. 2013; 4: Article 288. https://doi.org/10.3389/fpls. 2013.00288 PMID: 23908662 Striking

14. Pieterse CMJ, Van Der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012; 28: 489–521. https://doi.org/10.1146/annurev-cellbio092910-154055 PMID: 22559264

15. Wendehenne D, Gao Q ming, Kachroo A, Kachroo P. Free radical-mediated systemic immunity in plants. Curr Opin Plant Biol. 2014; 20: 127–134. https://doi.org/10.1016/j.pbi.2014.05.012 PMID: 24929297

16. Lu R, Liu Z, Shao Y, Su J, Li X, Sun F, et al. Nitric oxide enhances rice resistance to Rice black-streaked dwarf virus infection. Rice. 2020; 13: 24. https://doi.org/10.1186/s12284-020-00382-8 PMID: 32291541

17. Song F, Goodman RM. Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Mol Plant-Microbe Interact. 2001; 14: 1458–1462. https://doi.org/10.1094/MPMI.2001.14.12.1458 PMID: 11768542

18. Mayer D, Mitho¨fer A, Glawischnig E, Georgii E, Ghirardo A, Kanawati B, et al. Short-term exposure to nitrogen dioxide provides basal pathogen resistance. Plant Physiol. 2018; 178: 468–487. https://doi. org/10.1104/pp.18.00704 PMID: 30076223

19. Kasten D, Mitho¨fer A, Georgii E, Lang H, Durner J, Gaupels F. Nitrite is the driver, phytohormones are modulators while NO and H2O2 act as promoters of NO2-induced cell death. J Exp Bot. 2016; 67: 6337– 6349. https://doi.org/10.1093/jxb/erw401 PMID: 27811003

20. Mur LAJ, Prats E, Pierre S, Hall MA, Hebelstrup KH. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci. 2013; 4: Article 215. https://doi.org/10.3389/ fpls.2013.00215 PMID: 23818890

21. Jain P, Bhatla SC. Molecular mechanisms accompanying nitric oxide signalling through tyrosine nitration and S-nitrosylation of proteins in plants. Functional Plant Biology. 2018. pp. 70–82. https://doi.org/ 10.1071/FP16279 PMID: 32291022

22. Galib M, Limmer DT. Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes. Science (80-). 2021; 371: 921–925. https://doi.org/10.1126/science.abd7716 PMID: 33632842

23. Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, et al. A regulatory network for coordinated flower maturation. PLoS Genet. 2012; 8: e1002506. https://doi.org/10.1371/journal.pgen.1002506 PMID: 22346763

24. Narusaka M, Yao N, Iuchi A, Iuchi S, Shiraishi T, Narusaka Y. Identification of Arabidopsis accession with resistance to Botrytis cinerea by natural variation analysis, and characterization of the resistance response. Plant Biotechnol. 2013; 30: 89–95. https://doi.org/10.5511/plantbiotechnology.12.1226a

25. Ando S, Obinata A, Takahashi H. WRKY70 interacting with RCY1 disease resistance protein is required for resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiol Mol Plant Pathol. 2014; 85: 8– 14. https://doi.org/10.1016/j.pmpp.2013.11.001

26. Ross A, Somssich IE. A DNA-based real-time PCR assay for robust growth quantification of the bacterial pathogen Pseudomonas syringae on Arabidopsis thaliana. Plant Methods. 2016; 12: 48. https://doi. org/10.1186/s13007-016-0149-z PMID: 27895701

27. Takahashi H, Ehara Y. Severe chlorotic spot symptoms in cucumber mosaic virus strain Y-infected tobaccos are induced by a combination of the virus coat protein gene and two host recessive genes. Mol plant-microbe Interact. 1993; 6: 182–189. https://doi.org/10.1094/mpmi-6-182 PMID: 8471793

28. Takahashi H, Goto N, Ehara Y. Hypersensitive response in cucumber mosaic virus-inoculated Arabidopsis thaliana. Plant J. 1994; 6: 369–377. https://doi.org/10.1046/j.1365-313X.1994.06030369.x

29. Ando S, Jaskiewicz M, Mochizuki S, Koseki S, Miyashita S, Takahashi H, et al. Priming for enhanced ARGONAUTE2 activation accompanies induced resistance to cucumber mosaic virus in Arabidopsis thaliana. Mol Plant Pathol. 2021; 22: 19–

30. https://doi.org/10.1111/mpp.13005 PMID: 33073913 30. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993; 15: 532–537. PMID: 7692896

31. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016; 11: 1650–1667. https://doi.org/10. 1038/nprot.2016.095 PMID: 27560171

32. Li S, Fu Q, Chen L, Huang W, Yu D. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta. 2011; 233: 1237–1252. https://doi.org/10.1007/s00425-011- 1375-2 PMID: 21336597

33. Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel HJ, Overmyer K, et al. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant, Cell Environ. 2002; 25: 717–726. https://doi.org/10.1046/j.1365-3040.2002.00859.x

34. Rao M V., Koch JR, Davis KR. Ozone: A tool for probing programmed cell death in plants. Plant Mol Biol. 2000; 44: 345–358. https://doi.org/10.1023/a:1026548726807 PMID: 11199393

35. Rao M V., Lee H Il, Davis KR. Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J. 2002; 32: 447–456. https://doi.org/10.1046/j.1365-313x.2002.01434.x PMID: 12445117

36. Kangasja¨rvi J, Jaspers P, Kollist H. Signalling and cell death in ozone-exposed plants. Plant, Cell Environ. 2005; 28: 1021–1036. https://doi.org/10.1111/j.1365-3040.2005.01325.x

37. Bilgin DD, Aldea M, O’Neill BF, Benitez M, Li M, Clough SJ, et al. Elevated ozone alters soybean-virus interaction. Mol Plant-Microbe Interact. 2008; 21: 1297–1308. https://doi.org/10.1094/MPMI-21-10- 1297 PMID: 18785825

38. Yalpani N, Enyedi AJ, Leo´n J, Raskin I. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta. 1994; 193: 372–376. https://doi.org/10.1007/BF00201815

39. Takahashi H, Miller J, Nozaki Y, Sukamto, Takeda M, Shah J, et al. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 2002; 32: 655–667. https://doi.org/ 10.1046/j.1365-313x.2002.01453.x PMID: 12472683

40. AbuQamar S, Moustafa K, Tran LSP. Mechanisms and strategies of plant defense against Botrytis cinerea. Crit Rev Biotechnol. 2017; 37: 262–274. https://doi.org/10.1080/07388551.2016.1271767 PMID: 28056558

41. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005; 43: 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923 PMID: 16078883

42. Nomura K, Melotto M, He SY. Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr Opin Plant Biol. 2005; 8: 361–368. https://doi.org/10.1016/j.pbi.2005.05.005 PMID: 15936244

43. Gimenez-Ibanez S, Rathjen JP. The case for the defense: plants versus Pseudomonas syringae. Microbes Infect. 2010; 12: 428–437. https://doi.org/10.1016/j.micinf.2010.03.002 PMID: 20214999

44. Howlader P, Bose SK, Jia X, Zhang C, Wang W, Yin H. Oligogalacturonides induce resistance in Arabidopsis thaliana by triggering salicylic acid and jasmonic acid pathways against Pst DC3000. Int J Biol Macromol. 2020; 164: 4054–4064. https://doi.org/10.1016/j.ijbiomac.2020.09.026 PMID: 32910959

45. Jia X, Zeng H, Wang W, Zhang F, Yin H. Chitosan oligosaccharide induces resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana by activating both salicylic acid–and jasmonic acid–mediated pathways. Mol Plant-Microbe Interact. 2018; 31: 1271–1279. https://doi.org/10.1094/ MPMI-03-18-0071-R PMID: 29869942

46. Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol. 2012; 159: 266–285. https://doi.org/10.1104/pp.111.192641 PMID: 22392279

47. Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. Elife. 2015; 4: e07295. https://doi.org/10.7554/eLife.07295 PMID: 26076231

48. Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, et al. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front Plant Sci. 2019; 10: Article 1349. https://doi.org/10.3389/ fpls.2019.01349 PMID: 31681397

49. Choi HW, Manohar M, Manosalva P, Tian M, Moreau M, Klessig DF. Activation of plant innate immunity by extracellular High Mobility Group Box 3 and its inhibition by salicylic acid. PLoS Pathog. 2016; 12: e1005518. https://doi.org/10.1371/journal.ppat.1005518 PMID: 27007252

50. Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, et al. The grateful dead: Damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. 2007; 220: 60–81. https://doi.org/10.1111/j.1600-065X.2007.00579.x PMID: 17979840

51. Hou S, Liu Z, Shen H, Wu D. Damage-associated molecular pattern-triggered immunity in plants. Front Plant Sci. 2019; 10: Article 646. https://doi.org/10.3389/fpls.2019.00646 PMID: 31191574

52. Ve´ne´reau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front Immunol. 2015; 6: Article 422. https://doi.org/10.3389/fimmu.2015.00422 PMID: 26347745

53. Lim SY, Raftery MJ, Geczy CL. Oxidative modifications of DAMPs suppress inflammation: The case for S100A8 and S100A9. Antioxidants Redox Signal. 2011; 15: 2235–2248. https://doi.org/10.1089/ars. 2010.3641 PMID: 20919939

54. Ziegler K, Kunert AT, Reinmuth-Selzle K, Leifke AL, Widera D, Weller MG, et al. Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress. Redox Biol. 2020; 37: 101581. https://doi.org/10. 1016/j.redox.2020.101581 PMID: 32739154

55. Kumar P. Stress amelioration response of glycine betaine and Arbuscular mycorrhizal fungi in sorghum under Cr toxicity. PLoS One. 2021; 16: e0253878. https://doi.org/10.1371/journal.pone.0253878 PMID: 34283857

56. Kumar P, Tokas J, Singal HR. Amelioration of Chromium VI Toxicity in Sorghum (Sorghum bicolor L.) using Glycine Betaine. Sci Rep. 2019; 9: 16020. https://doi.org/10.1038/s41598-019-52479-w PMID: 31690803

57. Kumar P. Soil applied glycine betaine with Arbuscular mycorrhizal fungi reduces chromium uptake and ameliorates chromium toxicity by suppressing the oxidative stress in three genetically different Sorghum (Sorghum bicolor L.) cultivars. BMC Plant Biol. 2021; 21: 336. https://doi.org/10.1186/s12870-021- 03113-3 PMID: 34261429

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る