リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of laser peening on the fatigue strength and defect tolerance of aluminum alloy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of laser peening on the fatigue strength and defect tolerance of aluminum alloy

Takahashi Koji 90334630 Kogishi Yuta Shibuya Norihito Kumeno Fumiaki 横浜国立大学

2020.01.24

概要

The effects of laser peening (LP) on the bending fatigue strength of the 7075‐T651 aluminum alloy were investigated. Accordingly, the defect tolerance of the aluminum alloy subjected to LP is discussed on the basis of fracture mechanics. The results indicate that a deeper compressive residual stress was induced by LP compared with the case of shot peening (SP). The fatigue strengths increased when both peening types were used. Semicircular slits with depths less than 0.4 and 0.1 mm were rendered harmless on the basis of the applications of LP and SP, respectively. The apparent threshold stress intensity factor range ΔK_(th,ap) increased by approximately five and two times owing to LP and SP, respectively. The increase of the ΔK_(th,ap) was caused by the compressive residual stress induced by the peening. The Kitagawa‐Takahashi diagram of the laser‐peened specimens shows that the defect tolerance of the aluminum alloy was improved by LP.

参考文献

24

1.

Fairand BP, Wilcox BA, Gallagher WJ, Williams DN. Laser shock‐induced

microstructural and mechanical property changes in 7075 aluminum. J Appl Phys.

1972;43(9): 3893–3895.

2.

Peyre P, Fabbro R, Merrien P, Lieurade HP. Laser shock processing of aluminium

alloys. Application to high cycle fatigue behaviour. Mater Sci Eng: A.

1996;210(1): 102–113.

3.

Rodopoulos CA, Romero JS, Curtis SA, de los Rios ER, Peyre P. Effect of

controlled shot peening and laser shock peening on the fatigue performance of

2024-T351 aluminum alloy. J Mater Eng Perform. 2003;12(4): 414–419.

4.

laser peening and shot peening. Mater Sci Eng: A. 2011;528(10–11): 3823–3828.

10

11

Gao YK. Improvement of fatigue property in 7050–T7451 aluminum alloy by

5.

Liu Q, Yang CH, Ding K, Barter SA, Ye L. The effect of laser power density on

12

the fatigue life of laser-shock-peened 7050 aluminium alloy. Fatigue Fract Eng

13

Mater Struct. 2007;30(11): 1110–1124.

14

6.

Masaki K, Ochi Y, Matsumura T, Sano Y. Effects of laser peening treatment on

15

high cycle fatigue properties of degassing-processed cast aluminum alloy. Mater

16

Sci Eng: A. 2007;468-470: 171–175.

17

7.

Sano Y, Masaki K, Gushi T, Sano T. Improvement in fatigue performance of

18

friction stir welded A6061-T6 aluminum alloy by laser peening without coating.

19

Mater Des. 2012; 36:809–814.

20

8.

Wagner L, Mhaede M, Wollmann M, Altenberger I, Sano Y. Surface layer

21

properties and fatigue behavior in Al 7075–T73 and Ti–6Al–4V: Comparing

22

results after laser peening; shot peening and ball‐burnishing. Int J Struct Integr.

23

2011;2(2): 185–199.

24

9.

Luong H, Hill MR. The effects of laser peening and shot peening on high cycle

fatigue in 7050-T7451 aluminum alloy. Mater Sci Eng: A. 2010;527(3): 699–707.

10.

residual stresses. Eng Fract Mech. 1990;37(2): 373–387.

Hammond DW, Meguid SA. Crack propagation in the presence of shot-peening

11.

Zupanc U, Grum J. Effect of pitting corrosion on fatigue performance of shot-

peened aluminium alloy 7075–T651. J Mater Process Technol. 2010;210(9):

1197–1202.

12.

Inoue A, Sekigawa T, Oguri K, Tagawa T, Ishikawa T. Mechanism of fatigue life

improvement due to fine particle shot peening in high strength aluminum alloy. J

Jpn Inst Metals. 2010;74(6): 370–377.

10

13.

Eng Fail Anal. 2014;39: 155–163.

11

12

Barter SA, Molent L. Fatigue cracking from a corrosion pit in an aircraft bulkhead.

14.

Takahashi K, Amano T, Ando K, Takahashi F. Improvement of fatigue limit by

13

shot peening for high-strength steel containing a crack-like surface defect. Int J

14

Struct Integr. 2011;2(3): 281–292.

15

15.

Yasuda J, Takahashi K, Okada H. Improvement of fatigue limit by shot peening

16

for high-strength steel containing a crack-like surface defect: Influence of stress

17

ratio. Int J Struct Integr. 2014;5(1): 45–59.

18

16.

shot-peened medium-carbon steel. Eng Fract Mech. 2015;133(0): 99–111.

19

20

Sakamoto J, Lee Y-S, Cheong S-K. Effect of surface flaw on fatigue strength of

17.

Fueki R, Takahashi K, Handa M. Fatigue limit improvement and rendering defects

21

harmless by needle peening for high rensile steel welded joint. Metals. 2019;9(2):

22

143.

23

24

18.

Cláudio RA, Silva JM, Branco CM, Byrne J. A fracture mechanics based approach

to predict fatigue life of scratch damaged shot peened components. Procedia Eng.

2011;10: 2672–2677.

19.

Takahashi K, Osedo H, Suzuki T, Fukuda S. Fatigue strength improvement of an

aluminum alloy with a crack-like surface defect using shot peening and cavitation

peening. Eng Fract Mech. 2018;193: 151–161.

20.

Zhang XQ, Li H, Yu XL, et al. Investigation on effect of laser shock processing

on fatigue crack initiation and its growth in aluminum alloy plate. Mater Des.

2015;65: 425–431.

21.

property of 7050-T7451 aluminum alloy during two-sided laser shock processing.

Mater Des. 2011;32(2): 480–486.

10

11

Zhang L, Lu JZ, Zhang YK, et al. Effects of different shocked paths on fatigue

22.

Tan Y, Wu G, Yang J-M, Pan T. Laser shock peening on fatigue crack growth

12

behaviour of aluminium alloy. Fatigue Fract Eng Mater Struct. 2004;27(8): 649–

13

656.

14

23.

Chahardehi A, Brennan FP, Steuwer A. The effect of residual stresses arising from

15

laser shock peening on fatigue crack growth. Eng Fract Mech. 2010;77(11):

16

2033–2039.

17

24.

Smyth NA, Toparli MB, Fitzpatrick ME, Irving PE. Recovery of fatigue life using

18

laser peening on 2024‐T351 aluminium sheet containing scratch damage: The

19

role of residual stress. Fatigue Fract. Eng. Mater. Struct. 2019;42(5):1161-1174

20

25.

Spanrad S, Tong J. Characterisation of foreign object damage (FOD) and early

21

fatigue crack growth in laser shock peened Ti–6Al–4V aerofoil specimens. Mater.

22

Sci. Eng. A. 2011;528(4-5):2128-2136

23

24

26.

Zabeen S, Preuss M, Withers PJ. Evolution of a laser shock peened residual stress

field locally with foreign object damage and subsequent fatigue crack growth.

Acta Materialia. 2015;83(15):216-226

27.

Masaki K, Tsuji T, Kobayashi Y. Effect of peening treatment for out-of-plane

fatigue test on A7075–T651 alloy. Trans JSME (in Japanese). 2015;81(826): 15–

00003.

28.

diffraction-SAE J784a. Society of Automotive Engineers; 1971:64.

Society of Automotive Engineers. Residual stress measurement by X-ray

29.

Acceptable Defect size Research Comittie. The research committee report of the

acceptable defect size for spring steel. Trans Jpn Soc Spring Eng (in Japanese).

2008;2008(53): 57–66.

10

30.

surface crack. Eng Fract Mech. 1981;15(1–2): 185–192.

11

12

Newman Jr JC, Raju IS. An empirical stress-intensity factor equation for the

31.

Lee EU, Glinka G, Vasudevan AK, Iyyer N, Phan ND. Fatigue of 7075–T651

13

aluminum alloy under constant and variable amplitude loadings. Int J Fatigue.

14

2009;31(11): 1858–1864.

15

32.

thresholds. Int J Fatigue. 2003;25(1): 9–15.

16

17

Forth SC, Newman JC, Forman RG. On generating fatigue crack growth

33.

Fernández-Pariente I, Bagherifard S, Guagliano M, Ghelichi R. Fatigue behavior

18

of nitrided and shot peened steel with artificial small surface defects. Eng Fract

19

Mech. 2013;103(0): 2–9.

20

34.

Zhang J, Li X, Yang B, Wang H, Zhang J. Effect of micro-shot peening on fatigue

21

properties of precipitate strengthened Cu-Ni-Si alloy in air and in salt atmosphere.

22

Surf Coat Technol. 2019;359: 16–23.

23

24

35.

Kitagawa H, Takahashi S. Applicability of fracture mechanics to very small

cracks or the crack in the early stage. Proceedings of the Second International

Conference on Mechanical Behaviour of Material. 1976: 627–631.

36.

Mech Sci. 1978;20(4): 201–206.

Smith RA, Miller KJ. Prediction of fatigue regimes in notched components. Int J

37.

El Haddad MH, Topper TH, Smith KN. Prediction of non propagating cracks. Eng

Fracture Mech. 1979;11(3): 573–584.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る