リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Neutrophil S100A9 supports M2 macrophage niche formation in granulomas」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Neutrophil S100A9 supports M2 macrophage niche formation in granulomas

Mizutani, Tatsuaki Ano, Toshiaki Yoshioka, Yuya Mizuta, Satoshi Takemoto, Keiko Ouchi, Yuki Morita, Daisuke Kitano, Satsuki Miyachi, Hitoshi Tsuruyama, Tatsuaki Fujiwara, Nagatoshi Sugita, Masahiko 京都大学 DOI:10.1016/j.isci.2023.106081

2023.03.17

概要

Mycobacterium infection gives rise to granulomas predominantly composed of inflammatory M1-like macrophages, with bacteria-permissive M2 macrophages also detected in deep granulomas. Our histological analysis of Mycobacterium bovis bacillus Calmette-Guerin-elicited granulomas in guinea pigs revealed that S100A9-expressing neutrophils bordered a unique M2 niche within the inner circle of concentrically multilayered granulomas. We evaluated the effect of S100A9 on macrophage M2 polarization based on guinea pig studies. S100A9-deficient mouse neutrophils abrogated M2 polarization, which was critically dependent on COX-2 signaling in neutrophils. Mechanistic evidence suggested that nuclear S100A9 interacts with C/EBPβ, which cooperatively activates the Cox-2 promoter and amplifies prostaglandin E2 production, followed by M2 polarization in proximal macrophages. Because the M2 populations in guinea pig granulomas were abolished via treatment with celecoxib, a selective COX-2 inhibitor, we propose the S100A9/Cox-2 axis as a major pathway driving M2 niche formation in granulomas.

この論文で使われている画像

参考文献

1. Medzhitov, R., and Janeway, C.A., Jr. (1999). Innate immune induction of the adaptive immune response. Cold Spring Harbor Symp. Quant. Biol. 64, 429–435. https://doi.org/10. 1101/sqb.1999.64.429.

2. El-Zammar, O.A., and Katzenstein, A.L.A. (2007). Pathological diagnosis of granulomatous lung disease: a review. Histopathology 50, 289–310. https://doi.org/ 10.1111/j.1365-2559.2006.02546.x.

3. Fernando, A.S., Rattan, R., and Bott, S.R.J. (2013). Metastatic Crohn’s disease involving the foreskin - a case report and literature review. J. Clin. Urol. 6, 22–23. https://doi.org/ 10.1177/1875974212466356.

4. Fujita, J., Ohtsuki, Y., Suemitsu, I., Yamadori, I., Shigeto, E., Shiode, M., Nishimura, K., Hirayama, T., Matsushima, T., and Ishida, T. (2002). Immunohistochemical distribution of epithelioid cell, myofibroblast, and transforming growth factor-beta1 in the granuloma caused by Mycobacterium avium intracellulare complex pulmonary infection. Microbiol. Immunol. 46, 67–74. https://doi. org/10.1111/j.1348-0421.2002.tb02660.x.

5. Judson, M.A. (2015). The clinical features of sarcoidosis: a comprehensive review. Clin. Rev. Allergy Immunol. 49, 63–78. https://doi. org/10.1007/s12016-014-8450-y.

6. Williams, G.T., and Williams, W.J. (1983). Granulomatous inflammation–a review. J. Clin. Pathol. 36, 723–733. https://doi.org/ 10.1136/jcp.36.7.723.

7. Dorhoi, A., and Kaufmann, S.H.E. (2015). Versatile myeloid cell subsets contribute to tuberculosis-associated inflammation. Eur. J. Immunol. 45, 2191–2202. https://doi.org/10. 1002/eji.201545493.

8. Davis, J.M., and Ramakrishnan, L. (2009). The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49. https://doi.org/10.1016/j. cell.2008.11.014.

9. Huang, Z., Luo, Q., Guo, Y., Chen, J., Xiong, G., Peng, Y., Ye, J., and Li, J. (2015). Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro. PLoS One 10, e0129744. https://doi.org/10.1371/ journal.pone.0129744.

10. Marakalala, M.J., Raju, R.M., Sharma, K., Zhang, Y.J., Eugenin, E.A., Prideaux, B., Daudelin, I.B., Chen, P.Y., Booty, M.G., Kim, J.H., et al. (2016). Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat. Med. 22, 531–538. https:// doi.org/10.1038/nm.4073.

11. Khan, A., Singh, V.K., Hunter, R.L., and Jagannath, C. (2019). Macrophage heterogeneity and plasticity in tuberculosis. J. Leukoc. Biol. 106, 275–282. https://doi.org/ 10.1002/JLB.MR0318-095RR.

12. Bekker, L.G., Freeman, S., Murray, P.J., Ryffel, B., and Kaplan, G. (2001). TNF-alpha controls intracellular mycobacterial growth by both inducible nitric oxide synthase-dependent and inducible nitric oxide synthase- independent pathways. J. Immunol. 166, 6728–6734. https://doi.org/10.4049/ jimmunol.166.11.6728.

13. Murray, P.J. (2017). Macrophage polarization. Annu. Rev. Physiol. 79, 541–566. https://doi. org/10.1146/annurev-physiol-022516- 034339.

14. El Kasmi, K.C., Qualls, J.E., Pesce, J.T., Smith, A.M., Thompson, R.W., Henao-Tamayo, M., Basaraba, R.J., Ko¨ nig, T., Schleicher, U., Koo, M.S., et al. (2008). Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 9, 1399–1406. https://doi.org/ 10.1038/ni.1671.

15. Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51. https://doi.org/10.1016/j.cell.2010.03.014.

16. Yoshioka, Y., Mizutani, T., Mizuta, S., Miyamoto, A., Murata, S., Ano, T., Ichise, H., Morita, D., Yamada, H., Hoshino, Y., et al. (2016). Neutrophils and the S100A9 protein critically regulate granuloma formation. Blood Adv. 1, 184–192. https://doi.org/10. 1182/bloodadvances.2016000497.

17. Loser, K., Vogl, T., Voskort, M., Lueken, A., Kupas, V., Nacken, W., Klenner, L., Kuhn, A., Foell, D., Sorokin, L., et al. (2010). The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat. Med. 16, 713–717. https:// doi.org/10.1038/nm.2150.

18. Markowitz, J., and Carson, W.E., 3rd (2013). Review of S100A9 biology and its role in cancer. Biochim. Biophys. Acta 1835, 100–109. https://doi.org/10.1016/j.bbcan. 2012.10.003.

19. Roth, J., Burwinkel, F., van den Bos, C., Goebeler, M., Vollmer, E., and Sorg, C. (1993). MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium- dependent manner. Blood 82, 1875–1883.

20. He, Y.M., Li, X., Perego, M., Nefedova, Y., Kossenkov, A.V., Jensen, E.A., Kagan, V., Liu, Y.F., Fu, S.Y., Ye, Q.J., et al. (2018). Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation. Nat. Med. 24, 224–231. https:// doi.org/10.1038/nm.4467.

21. McNeill, E., and Hogg, N. (2014). S100A9 has a protective role in inflammation-induced skin carcinogenesis. Int. J. Cancer 135, 798–808. https://doi.org/10.1002/ijc.28725.

22. Petersen, B., Wolf, M., Austermann, J., van Lent, P., Foell, D., Ahlmann, M., Kupas, V., Loser, K., Sorg, C., Roth, J., and Vogl, T. (2013). The alarmin Mrp8/14 as regulator of the adaptive immune response during allergic contact dermatitis. EMBO J. 32, 100–111. https://doi.org/10.1038/emboj. 2012.309.

23. Vogl, T., Tenbrock, K., Ludwig, S., Leukert, N., Ehrhardt, C., van Zoelen, M.A.D., Nacken, W., Foell, D., van der Poll, T., Sorg, C., and Roth, J. (2007). Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049. https://doi.org/10.1038/ nm1638.

24. Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35. https://doi.org/10.1038/nri978.

25. Moseman, A.P., Moseman, E.A., Schworer, S., Smirnova, I., Volkova, T., von Andrian, U., and Poltorak, A. (2013). Mannose receptor 1 mediates cellular uptake and endosomal delivery of CpG-motif containing oligodeoxynucleotides. J. Immunol. 191, 5615–5624. https://doi.org/10.4049/ jimmunol.1301438.

26. Wang, S., Song, R., Wang, Z., Jing, Z., Wang, S., and Ma, J. (2018). S100A8/A9 in inflammation. Front. Immunol. 9, 1298. https://doi.org/10.3389/fimmu.2018.01298.

27. van den Bosch, M.H., Blom, A.B., Schelbergen, R.F., Koenders, M.I., van de Loo, F.A., van den Berg, W.B., Vogl, T., Roth, J., van der Kraan, P.M., and van Lent, P.L. (2016). Alarmin S100A9 induces proinflammatory and catabolic effects predominantly in the M1 macrophages of human osteoarthritic synovium. J. Rheumatol. 43, 1874–1884. https://doi.org/10.3899/ jrheum.160270.

28. Ka¨ llberg, E., Vogl, T., Liberg, D., Olsson, A., Bjo¨ rk, P., Wikstro¨ m, P., Bergh, A., Roth, J., Ivars, F., and Leanderson, T. (2012). S100A9 interaction with TLR4 promotes tumor growth. PLoS One 7, e34207. https://doi.org/ 10.1371/journal.pone.0034207.

29. Salim, T., Sershen, C.L., and May, E.E. (2016). Investigating the role of TNF-alpha and IFN- gamma activation on the dynamics of iNOS gene expression in LPS stimulated macrophages. PLoS One 11, e0153289. https://doi.org/10.1371/journal.pone. 0153289.

30. Zhang, D., Chen, G., Manwani, D., Mortha, A., Xu, C., Faith, J.J., Burk, R.D., Kunisaki, Y., Jang, J.E., Scheiermann, C., et al. (2015). Neutrophil ageing is regulated by the microbiome. Nature 525, 528–532. https:// doi.org/10.1038/nature15367.

31. Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. https://doi.org/10.1038/nprot. 2008.211.

32. Martinez, F.O., Gordon, S., Locati, M., and Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177, 7303–7311. https://doi.org/ 10.4049/jimmunol.177.10.7303.

33. Sugimoto, Y., and Narumiya, S. (2007). Prostaglandin E receptors. J. Biol. Chem. 282, 11613–11617. https://doi.org/10.1074/jbc. R600038200.

34. Kabashima, K., Sakata, D., Nagamachi, M., Miyachi, Y., Inaba, K., and Narumiya, S. (2003). Prostaglandin E2-EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nat. Med. 9, 744–749. https://doi.org/10.1038/ nm872.

35. Song, R., and Struhl, K. (2021). S100A8/ S100A9 cytokine acts as a transcriptional coactivator during breast cellular transformation. Sci. Adv. 7, eabe5357. https://doi.org/10.1126/sciadv.abe5357.

36. Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., Sandstrom, R., Ma, Z., Davis, C., Pope, B.D., et al. (2014). A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–364. https://doi. org/10.1038/nature13992.

37. Newton, R., Kuitert, L.M., Bergmann, M., Adcock, I.M., and Barnes, P.J. (1997). Evidence for involvement of NF-kappaB in the transcriptional control of COX-2 gene expression by IL-1beta. Biochem. Biophys. Res. Commun. 237, 28–32. https://doi.org/10. 1006/bbrc.1997.7064.

38. Berry, M.P.R., Graham, C.M., McNab, F.W., Xu, Z., Bloch, S.A.A., Oni, T., Wilkinson, K.A., Banchereau, R., Skinner, J., Wilkinson, R.J., et al. (2010). An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977. https://doi.org/10.1038/ nature09247.

39. Kroon, E.E., Coussens, A.K., Kinnear, C., Orlova, M., Mo¨ ller, M., Seeger, A., Wilkinson, R.J., Hoal, E.G., and Schurr, E. (2018). Neutrophils: innate effectors of TB resistance? Front. Immunol. 9, 2637. https:// doi.org/10.3389/fimmu.2018.02637.

40. Scott, N.R., Swanson, R.V., Al-Hammadi, N., Domingo-Gonzalez, R., Rangel-Moreno, J., Kriel, B.A., Bucsan, A.N., Das, S., Ahmed, M., Mehra, S., et al. (2020). S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. J. Clin. Invest. 130, 3098–3112. https://doi. org/10.1172/JCI130546.

41. Schreiber, T., Ehlers, S., Heitmann, L., Rausch, A., Mages, J., Murray, P.J., Lang, R., and Ho¨ lscher, C. (2009). Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity. J. Immunol. 183, 1301–1312. https://doi.org/10.4049/ jimmunol.0803567.

42. Frosch, M., Vogl, T., Seeliger, S., Wulffraat, N., Kuis, W., Viemann, D., Foell, D., Sorg, C., Sunderko¨ tter, C., and Roth, J. (2003). Expression of myeloid-related proteins 8 and 14 in systemic-onset juvenile rheumatoid arthritis. Arthritis Rheum. 48, 2622–2626. https://doi.org/10.1002/art.11177.

43. Ghavami, S., Rashedi, I., Dattilo, B.M., Eshraghi, M., Chazin, W.J., Hashemi, M., Wesselborg, S., Kerkhoff, C., and Los, M. (2008). S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J. Leukoc. Biol. 83, 1484–1492. https://doi.org/10.1189/jlb.0607397.

44. Franz, S., Ertel, A., Engel, K.M., Simon, J.C., and Saalbach, A. (2022). Overexpression of S100A9 in obesity impairs macrophage differentiation via TLR4-NFkB-signaling worsening inflammation and wound healing. Theranostics 12, 1659–1682. https://doi.org/ 10.7150/thno.67174.

45. Akiyama, M., Zeisbrich, M., Ibrahim, N., Ohtsuki, S., Berry, G.J., Hwang, P.H., Goronzy, J.J., and Weyand, C.M. (2019). Neutrophil extracellular traps induce tissue- invasive monocytes in granulomatosis with polyangiitis. Front. Immunol. 10, 2617. https://doi.org/10.3389/fimmu.2019.02617.

46. Gopal, R., Monin, L., Torres, D., Slight, S., Mehra, S., McKenna, K.C., Fallert Junecko, B.A., Reinhart, T.A., Kolls, J., Ba´ ez-Saldan˜ a, R., et al. (2013). S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am. J. Respir. Crit. Care Med. 188, 1137–1146. https://doi. org/10.1164/rccm.201304-0803OC.

47. Adams, G.N., Stavrou, E.X., Fang, C., Merkulova, A., Alaiti, M.A., Nakajima, K., Morooka, T., Merkulov, S., Larusch, G.A., Simon, D.I., et al. (2013). Prolylcarboxypeptidase promotes angiogenesis and vascular repair. Blood 122, 1522–1531. https://doi.org/10.1182/blood- 2012-10-460360.

48. de Melo, M.G.M., Mesquita, E.D.D., Oliveira, M.M., da Silva-Monteiro, C., Silveira, A.K.A., Malaquias, T.S., Dutra, T.C.P., Galliez, R.M., Kritski, A.L., and Silva, E.C.; Rede-TB Study Group (2018). Imbalance of NET and alpha-1- antitrypsin in tuberculosis patients is related with hyper inflammation and severe lung tissue damage. Front. Immunol. 9, 3147. https://doi.org/10.3389/fimmu.2018.03147.

49. Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Mu¨ hlradt, P.F., Sato, S., Hoshino, K., and Akira, S. (2001). Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167, 5887–5894. https://doi.org/ 10.4049/jimmunol.167.10.5887.

50. Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6, 173–182. https://doi.org/10. 1038/nri1785.

51. Silvestre-Roig, C., Fridlender, Z.G., Glogauer, M., and Scapini, P. (2019). Neutrophil diversity in Health and disease. Trends Immunol. 40, 565–583. https://doi.org/10.1016/j.it.2019.04.012.

52. Veglia, F., Sanseviero, E., and Gabrilovich, D.I. (2021). Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498. https://doi. org/10.1038/s41577-020-00490-y.

53. Gao, J., Wu, Y., Su, Z., Amoah Barnie, P., Jiao, Z., Bie, Q., Lu, L., Wang, S., and Xu, H. (2014). Infiltration of alternatively activated macrophages in cancer tissue is associated with MDSC and Th2 polarization in patients with esophageal cancer. PLoS One 9, e104453. https://doi.org/10.1371/journal. pone.0104453.

54. Katopodi, T., Petanidis, S., Domvri, K., Zarogoulidis, P., Anestakis, D., Charalampidis, C., Tsavlis, D., Bai, C., Huang, H., Freitag, L., et al. (2021). Kras-driven intratumoral heterogeneity triggers infiltration of M2 polarized macrophages via the circHIPK3/PTK2 immunosuppressive circuit. Sci. Rep. 11, 15455. https://doi.org/10. 1038/s41598-021-94671-x.

55. Fujita, M., Kohanbash, G., Fellows-Mayle, W., Hamilton, R.L., Komohara, Y., Decker, S.A., Ohlfest, J.R., and Okada, H. (2011). COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 71, 2664–2674. https:// doi.org/10.1158/0008-5472.CAN-10-3055.

56. Lasco, T.M., Turner, O.C., Cassone, L., Sugawara, I., Yamada, H., McMurray, D.N., and Orme, I.M. (2004). Rapid accumulation of eosinophils in lung lesions in Guinea pigs infected with Mycobacterium tuberculosis. Infect. Immun. 72, 1147–1149. https://doi.org/10.1128/IAI.72.2.1147- 1149.2004.

57. Xu, L., Yang, Y., Jiang, J., Wen, Y., Jeong, J.M., Emontzpohl, C., Atkins, C.L., Kim, K., Jacobsen, E.A., Wang, H., and Ju, C. (2023). Eosinophils protect against acetaminophen- induced liver injury through cyclooxygenase- mediated IL-4/IL-13 production. Hepatology 77, 456–465. https://doi.org/10.1002/hep. 32609.

58. Kim, Y.G., Udayanga, K.G.S., Totsuka, N., Weinberg, J.B., Nu´ n˜ ez, G., and Shibuya, A. (2014). Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE(2). Cell Host Microbe 15, 95–102. https://doi.org/10. 1016/j.chom.2013.12.010.

59. Labun, K., Montague, T.G., Gagnon, J.A., Thyme, S.B., and Valen, E. (2016). CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44. 272–6.

60. Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12, 357–360.

61. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

62. Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., Sidiropoulos, K., Cook, J., Gillespie, M., and Haw, R. (2020). The reactome pathway knowledgebase. Nucleic Acids Res 48, D498–D503.

63. Dull, T., Zufferey, R., Kelly, M., Mandel, R.J., Nguyen, M., Trono, D., and Naldini, L. (1998). A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471. https://doi.org/10.1128/JVI.72.11.8463-8471.1998.

64. Miyoshi, H., Blo¨ mer, U., Takahashi, M., Gage, F.H., and Verma, I.M. (1998). Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150–8157. https://doi.org/10.1128/JVI.72.10.8150-8157.1998.

参考文献をもっと見る