リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Screening for Osteoporosis from Blood Test Data in Elderly Women Using a Machine Learning Approach」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Screening for Osteoporosis from Blood Test Data in Elderly Women Using a Machine Learning Approach

Inui, Atsuyuki Nishimoto, Hanako Mifune, Yutaka Yoshikawa, Tomoya Shinohara, Issei Furukawa, Takahiro Kato, Tatsuo Tanaka, Shuya Kusunose, Masaya Kuroda, Ryosuke 神戸大学

2023.03

概要

The diagnosis of osteoporosis is made by measuring bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA). Machine learning, one of the artificial intelligence methods, was used to predict low BMD without using DXA in elderly women. Medical records from 2541 females who visited the osteoporosis clinic were used in this study. As hyperparameters for machine learning, patient age, body mass index (BMI), and blood test data were used. As machine learning models, logistic regression, decision tree, random forest, gradient boosting trees, and lightGBM were used. Each model was trained to classify and predict low-BMD patients. The model performance was compared using a confusion matrix. The accuracy of each trained model was 0.772 in logistic regression, 0.739 in the decision tree, 0.775 in the random forest, 0.800 in gradient boosting, and 0.834 in lightGBM. The area under the curve (AUC) was 0.595 in the decision tree, 0.673 in logistic regression, 0.699 in the random forest, 0.840 in gradient boosting, and 0.961, which was the highest, in the lightGBM model. Important features were BMI, age, and the number of platelets. Shapley additive explanation scores in the lightGBM model showed that BMI, age, and ALT were ranked as important features. Among several machine learning models, the lightGBM model showed the best performance in the present research.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Ferizi, U.; Honig, S.; Chang, G. Artificial intelligence, osteoporosis, and fragility fractures. Curr. Opin. Rheumatol. 2019, 31,

368–375. [CrossRef]

Peck, W.A. Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 1993, 94,

646–650.

Kanis, J.A. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 2002, 359, 1929–1936. [CrossRef]

Kanis, J.A.; McCloskey, E.V.; Johansson, H.; Strom, O.; Borgstrom, F.; Oden, A. National Osteoporosis Guideline Group Case

finding for the management of osteoporosis with FRAX® —Assessment and intervention thresholds for the UK. Osteoporos. Int.

2008, 19, 1395–1408. [CrossRef] [PubMed]

Chen, J.H.; Asch, S.M. Machine Learning and Prediction in Medicine—Beyond the Peak of Inflated Expectations. New Engl. J.

Med. 2017, 376, 2507–2509. [CrossRef] [PubMed]

Koch, M. Artificial Intelligence Is Becoming Natural. Cell 2018, 173, 531–533. [CrossRef]

Madelin, G.; Poidevin, F.; Makrymallis, A.; Regatte, R.R. Classification of sodium MRI data of cartilage using machine learning.

Magn. Reson. Med. 2015, 74, 1435–1448. [CrossRef] [PubMed]

Kruse, C.; Eiken, P.; Vestergaard, P. Machine Learning Principles Can Improve Hip Fracture Prediction. Calcif. Tissue Int. 2017,

100, 348–360. [CrossRef]

Kruse, C.; Eiken, P.; Vestergaard, P. Clinical fracture risk evaluated by hierarchical agglomerative clustering. Osteoporos. Int. 2017,

28, 819–832. [CrossRef]

Villamor, E.; Monserrat, C.; Del Río, L.; Romero-Martín, J.; Rupérez, M. Prediction of osteoporotic hip fracture in postmenopausal

women through patient-specific FE analyses and machine learning. Comput. Methods Programs Biomed. 2020, 193, 105484.

[CrossRef] [PubMed]

Shioji, M.; Yamamoto, T.; Ibata, T.; Tsuda, T.; Adachi, K.; Yoshimura, N. Artificial neural networks to predict future bone mineral

density and bone loss rate in Japanese postmenopausal women. BMC Res. Notes 2017, 10, 590. [CrossRef]

Huang, C.-B.; Hu, J.-S.; Tan, K.; Zhang, W.; Xu, T.-H.; Yang, L. Application of machine learning model to predict osteoporosis

based on abdominal computed tomography images of the psoas muscle: A retrospective study. BMC Geriatr. 2022, 22, 796.

[CrossRef]

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

Matsuo, K.; Aihara, H.; Nakai, T.; Morishita, A.; Tohma, Y.; Kohmura, E. Machine Learning to Predict In-Hospital Morbidity and

Mortality after Traumatic Brain Injury. J. Neurotrauma 2020, 37, 202–210. [CrossRef]

Brunelli, A.; Rocco, G. Internal validation of risk models in lung resection surgery: Bootstrap versus training-and-test sampling. J.

Thorac. Cardiovasc. Surg. 2006, 131, 1243–1247. [CrossRef]

Crandall, C.J.; Ensrud, K.E. Osteoporosis Screening in Younger Postmenopausal Women. JAMA 2020, 323, 367–368. [CrossRef]

[PubMed]

Koh, L.K.H.; Ben Sedrine, W.; Torralba, T.P.; Kung, A.; Fujiwara, S.; Chan, S.P.; Huang, Q.R.; Rajatanavin, R.; Tsai, K.-S.; Park, H.M.;

et al. A Simple Tool to Identify Asian Women at Increased Risk of Osteoporosis. Osteoporos. Int. 2001, 12, 699–705. [CrossRef]

[PubMed]

Bioengineering 2023, 10, 277

18.

19.

20.

21.

22.

23.

24.

25.

26.

10 of 10

Bui, H.M.; Ha, M.H.; Pham, H.G.; Dao, T.P.; Nguyen, T.-T.T.; Nguyen, M.L.; Vuong, N.T.; Hoang, X.H.T.; Do, L.T.; Dao, T.X.; et al.

Predicting the risk of osteoporosis in older Vietnamese women using machine learning approaches. Sci. Rep. 2022, 12, 20160.

[CrossRef]

Erjiang, E.; Wang, T.; Yang, L.; Dempsey, M.; Brennan, A.; Yu, M.; Chan, W.P.; Whelan, B.; Silke, C.; O’Sullivan, M.; et al. Machine

Learning Can Improve Clinical Detection of Low BMD: The DXA-HIP Study. J. Clin. Densitom. 2020, 24, 527–537. [CrossRef]

Ou Yang, W.Y.; Lai, C.C.; Tsou, M.T.; Hwang, L.C. Development of Machine Learning Models for Prediction of Osteoporosis from

Clinical Health Examination Data. Int. J. Environ. Res. Public Health 2021, 18, 7635. [CrossRef] [PubMed]

Yan, J.; Xu, Y.; Cheng, Q.; Jiang, S.; Wang, Q.; Xiao, Y.; Ma, C.; Yan, J.; Wang, X. LightGBM: Accelerated genomically designed crop

breeding through ensemble learning. Genome Biol. 2021, 22, 271. [CrossRef] [PubMed]

Shimizu, T.; Suda, K.; Maki, S.; Koda, M.; Harmon, S.M.; Komatsu, M.; Ota, M.; Ushirozako, H.; Minami, A.; Takahata, M.;

et al. Efficacy of a machine learning-based approach in predicting neurological prognosis of cervical spinal cord injury patients

following urgent surgery within 24 h after injury. J. Clin. Neurosci. 2022, 107, 150–156. [CrossRef] [PubMed]

Ahamad, M.; Aktar, S.; Uddin, J.; Rahman, T.; Alyami, S.A.; Al-Ashhab, S.; Akhdar, H.F.; Azad, A.; Moni, M.A. Early-Stage

Detection of Ovarian Cancer Based on Clinical Data Using Machine Learning Approaches. J. Pers. Med. 2022, 12, 1211. [CrossRef]

[PubMed]

Tsai, I.-J.; Shen, W.-C.; Lee, C.-L.; Wang, H.-D.; Lin, C.-Y. Machine Learning in Prediction of Bladder Cancer on Clinical Laboratory

Data. Diagnostics 2022, 12, 203. [CrossRef]

Breitling, L.P. Liver enzymes and bone mineral density in the general population. J. Clin. Endocrinol. Metab. 2015, 100, 3832–3840.

[CrossRef]

Kim, J.; Kim, H.S.; Lee, H.S.; Kwon, Y.-J. The relationship between platelet count and bone mineral density: Results from two

independent population-based studies. Arch. Osteoporos. 2020, 15, 43. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る