リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transcriptome analysis of a dog model of congestive heart failure shows that collagen-related 2-oxoglutarate-dependent dioxygenases contribute to heart failure」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transcriptome analysis of a dog model of congestive heart failure shows that collagen-related 2-oxoglutarate-dependent dioxygenases contribute to heart failure

ISONO Takahiro 20176259 0000-0003-2383-0667 MATSUMOTO Takehiro SUZAKI Masafumi KUBOTA Shigehisa 80759118 KAGEYAMA Susumu 50378452 0000-0001-7150-647X KAWAUCHI Akihiro 90240952 WADA Atsuyuki 10273400 滋賀医科大学

2022.12.29

概要

Fibrosis is an important pathological mechanism in heart failure (HF) and is associated with poor prognosis. We analyzed fibrosis in HF patients using transcriptomic data. Genes differentially expressed between normal control and congestive HF (CHF) dogs included P3H1, P3H2, P3H4, P4HA2, PLOD1 and PLOD3, which belong to the 2-oxoglutarate-dependent dioxygenases (2OGD) superfamily that stabilizes collagen during fibrosis. Quantitative polymerase chain reaction analysis demonstrated 2OGD gene expression was increased in CHF samples compared with normal left ventricle (LV) samples. 2OGD gene expression was repressed in angiotensin converting enzyme inhibitor-treated samples. These genes, activated the hydroxylation of proline or lysin residues of procollagen mediated by 2-oxoglutaric acid and O2, produce succinic acid and CO2. Metabolic analysis demonstrated the concentration of succinic acid was significantly increased in CHF samples compared with normal LV samples. Fibrosis was induced in human cardiac fibroblasts by TGF-ß1 treatment. After treatment, the gene and protein expressions of 2OGD, the concentration of succinic acid, and the oxygen consumption rate were increased compared with no treatment. This is the first study to show that collagen-related 2OGD genes contribute to HF during the induction of fibrosis and might be potential therapeutic targets for fibrosis and HF.

この論文で使われている画像

参考文献

1. González, A., Schelbert, E. B., Díez, J. & Butler, J. Myocardial interstitial fbrosis in heart failure: Biological and translational perspectives. J. Am. Coll. Cardiol. 71, 1696–1706 (2018).

2. Frangoginnis, N. G. Cardiac fbrosis. Cardiovasc. Res. 117, 1450–1488 (2021).

3. Wada, A., Tsutamoto, T., Matsuda, Y. & Kinoshita, M. Cardiorenal and neurohumonal efects of endogeneous atrial natriuretic peptides in dog with severe congestive heart failure using a specifc antagonist for guanylate cyclase coupled receptor. Circulation 89, 2232–2240 (1994).

4. Wada, A. et al. Efects of a endothelin-converting enzyme inhibitor on cardiac, renal, and neurohumoral functions in congestive heart failure: Comparison of efects with those of endothelin a receptor antagonism. Circulation 99, 570–577 (1999).

5. Fujii, M. et al. Bradykinin improves lef ventricular diastolic function under long-term angiotensin-converting enzyme inhibition in heart failure. Hypertension 39, 952–957 (2002).

6. Matsumoto, T. et al. Chymase inhibition prevents cardiac fbrosis and improves diastolic dysfunction in the progression of heart failure. Circulation 107, 2555–2558 (2003).

7. Dohke, T. et al. Proteomic analysis reveals signifcant alternations of cardiac small heat shock protein expression in congestive heart failure. J. Cardiac. Failure 12, 77–84 (2006).

8. Isono, T., Matsumoto, T. & Wada, A. A global transcriptome analysis of a dog model of congestive heart failure with the human genome as a reference. J. Cardiac Failure 18, 872–878 (2012).

9. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523. https://doi.org/10.1038/s41467-019-09234-6 (2019).

10. Markolovic, S., Wilkins, S. E. & Schofeld, C. J. Protein hydroxylation catalyzed by 2-oxoglutarate-dependent oxygenases. J. Biol. Chem. 290, 20712–20722 (2011).

11. Liguori, T. T. A., Liguori, G. R., Moreira, L. F. P. & Harmsen, M. C. Fibroblast growth factor-2, but not the adipose tissue-derived stromal cells secretome, inhibits TGF-β1-induced diferentiation of human cardiac fbroblasts into myofbroblasts. Sci. Rep. 8, 16633. https://doi.org/10.1038/s41598-018-34747-3 (2018).

12. Nomura, S. et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat. Commun. 9, 4435. https://doi.org/10.1038/s41467-018-06639-7 (2018).

13. Vallet, S. D. & Ricard-Blum, S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 63, 349–364 (2019).

14. Sulser, P. et al. HIF hydroxylase inhibitors decrease cellular oxygen consumption depending on their selectivity. FASEB J. 34, 464–470 (2020).

15. Kiriakidis, S. et al. Complement C1q is hydroxylated by collagen prolyl 4 hydroxylase and is sensitive to of-target inhibition by prolyl hydroxylase domain inhibitors that stabilize hypoxia-inducible factor. Kidney Int. 92, 900–908 (2017).

16. Fu, X. et al. Specialized fbroblast diferentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Invest. 128, 2127–2143 (2018).

17. Tallquist, M. D. & Molkentin, J. D. Redefning the identity of cardiac fbroblasts. Nat. Rev. Cardiol. 14, 484–491 (2017).

18. Martin, M. Cutadapt removes adapter sequences from high through put sequencing reads. EMB Net. J. 17, 10–12 (2011).

19. Kim, D. et al. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36. https://doi.org/10.1186/gb-2013-14-4-r36 (2013).

20. Trapnell, C. et al. Transcript assembly and quantifcation by RNA-Seq reveals unannotated transcripts and isoform switching during cell diferentiation. Nat. Biotech. 28, 511–515 (2010).

21. Wu, M. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. 292, C125–C136 (2007).

22. Isono, T., Chano, T., Yonese, J. & Yuasa, T. Terapeutic inhibition of mitochondrial function induces cell death in starvationresistant renal cell carcinomas. Sci. Rep. 6, e25669. https://doi.org/10.1038/srep25669 (2016).

参考文献をもっと見る