リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「高度好熱性真正細菌Thermotoga maritimaの複製起点における開始複合体の形成メカニズムと開裂部位の特性の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

高度好熱性真正細菌Thermotoga maritimaの複製起点における開始複合体の形成メカニズムと開裂部位の特性の解析

盧, 楚元 LU, CHUYUAN ロ, ソゲン 九州大学

2023.09.25

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Analyses for mechanisms in formation of the
replication initiation complex and for
functional characteristics of the DNA unwinding
region at the replication origin of
hyperthermophilic bacterium Thermotoga maritima
盧, 楚元

https://hdl.handle.net/2324/7157321
出版情報:Kyushu University, 2023, 博士(創薬科学), 課程博士
バージョン:
権利関係:

(様式5)氏


:盧

論文題名

楚元


Analyses for mechanisms in formation of the replication initiation complex and for functional
characteristics of the DNA unwinding region at the replication origin of
hyperthermophilic bacterium Thermotoga maritima

(高度好熱性真正細菌 Thermotoga maritima の複製起点に
おける開始複合体の形成メカニズムと開裂部位の特性の解析)





:甲















Chromosomal DNA replication is a central process in all cellular organisms. To initiate DNA
replication, a specific nucleoprotein complex called the initiation complex is constructed at the
origin of replication, promoting recruitment of the replisome components, DNA helicase, primase,
DNA polymerase, etc.. If the regulation of replication initiation is disturbed, it can lead to various
cellular abnormalities, including abnormal chromosomes, inhibition of cell division, and the
proliferation of abnormal cells. To avoid these problems, the processes of the initiation complex
formation are highly organized in order to ensure the replication of chromosomal DNA to occur
only once at a specific time during the cell cycle progression. Thus, the study addressing the
common principles underlying initiation complexes plays a fundamental role in the fields of
pharmaceutical biochemistry and molecular biology.
In well-characterized Escherichia coli, the main components of the initiation complex are the
replication origin oriC, the initiator protein DnaA and the DNA bending protein IHF. In most
eubacteria, the oriC contains the DNA unwinding element (DUE) and DnaA oligomerization
region (DOR) bearing multiple DnaA box sequences to which the initiator protein DnaA binds
specifically. DnaA is ubiquitous in eubacterial domain and the canonical DnaA box consists of an
asymmetric 9-mer consensus sequence, TTA[T/A]NCACA. DnaA consists of four domains and the
C-terminal domain IV binds to the DnaA box sequence specifically. The central DnaA domain III
containing AAA+ (ATPases associated with various cellular activities) motifs, promoting
head-to-tail oligomerization, which underlies the formation of an initiation complex by the ATP
form of DnaA (ATP-DnaA). Domains III and IV are connected by a short linker. Domain I contains
a specific binding stie for helicase and domain II is a flexible linker. In Escherichia coli oriC, the
head-to-tail ATP-DnaA oligomers constructed on the IHF-bound DOR promote unwinding of DUE
and concomitantly bind the single-stranded DUE to stabilize the unwound form, enabling loading

of helicases to the single-stranded region. Despite the significant sequence homologies among
DnaA proteins, bacterial oriC sequences are highly diverse. In particular, the number of DnaA
boxes and their spatial arrangements are differentiated substantially among bacterial oriCs.
Moreover, the functional motifs within bacterial DUEs have been insufficiently determined due to
the lack of in-depth characterization using in vitro reconstituted systems.
In order to elucidate the basic mechanisms underlying DNA unwinding at DUE and the
mechanistic mode of DnaA oligomerization at the origin of replication, I focused on the
hyperthermophilic eubacterium Thermotoga maritima as a model organism. T. maritima is
placed at a deep branch in the evolutional tree of life. The 149-bp minimal oriC (tma-oriC) region
of this bacterium, which contains a 24-bp AT-rich DUE (tmaDUE) and a flanking DOR (tmaDOR)
with five tmaDnaA boxes, is required for open complex formation by the cognate DnaA initiator
(tmaDnaA). However, the unwinding motifs within tmaDUE and the mode of tmaDnaA
oligomerization remained poorly characterized.
In this study, I first investigated the tmaDUE sequence motifs crucial for open complex
formation. Using the electron mobility shift assays in combination with mutant tmaDUE
analyses, I found that tmaDUE was comprised of two distinct functional modules, an unwinding
module and a tmaDnaA-binding module. Three direct repeats of the trinucleotide TAG within

tmaDUE were essential for both unwinding and single-stranded tmaDUE binding by tmaDnaA
complexes constructed on the DnaA boxes. Its surrounding AT-rich sequences stimulated only
duplex unwinding.
Moreover, I show biochemical evidence that head-to-tail oligomers of ATP-bound tmaDnaA
were constructed within tma-oriC, irrespective of the directions of the tmaDnaA boxes. This
binding mode was considered to be induced by flexible swiveling of DnaA domains III and IV,
which were responsible for DnaA-DnaA interactions and DnaA box binding, respectively. The
flexible nature of the linker between tmaDnaA domains III and IV would allow considerable
swiveling of the domains. Phasing of specific tmaDnaA boxes in tma-oriC DNA was also
responsible for unwinding. These findings indicate that a single-stranded DUE recruitment
mechanism was responsible for unwinding and would enhance understanding of the fundamental
molecular nature of the origin sequences present in evolutionarily divergent bacteria, including
numerous pathogenic bacteria. Consequently, this research has the potential to contribute to the
development of innovative antibiotics against pathogenic bacteria in the future.

この論文で使われている画像

参考文献

Abe Y, Jo T, Matsuda Y, Matsunaga C, Katayama T & Ueda T (2007) Structure and

Function of DnaA N-terminal Domains. J. Biol. Chem. 282: 17816–17827

Balaceanu A, Buitrago D, Walther J, Hospital A, Dans PD & Orozco M (2019)

Modulation of the helical properties of DNA: next-to-nearest neighbour effects and

beyond. Nucleic Acids Res. 47: 4418–4430

Chatterjee S, Jha JK, Ciaccia P, Venkova T & Chattoraj DK (2020) Interactions of

replication initiator RctB with single- and double-stranded DNA in origin opening

of Vibrio cholerae chromosome 2. Nucleic Acids Res. 48: 11016–11029

Chodavarapu S, Felczak MM, Yaniv JR & Kaguni JM (2007) Escherichia coli DnaA

interacts with HU in initiation at the E. coli replication origin. Mol. Microbiol. 67:

781–792

Costa A, Hood I V. & Berger JM (2013) Mechanisms for Initiating Cellular DNA

Replication. Annu. Rev. Biochem. 82: 25–54

Dong M. J., Luo H & Gao F (2023) DoriC 12.0: an updated database of replication

origins in both complete and draft prokaryotic genomes. Nucleic Acids Res. 51:

D117–D120

Erzberger JP, Mott ML & Berger JM (2006) Structural basis for ATP-dependent DnaA

assembly and replication-origin remodeling. Nat. Struct. Mol. Biol. 13: 676–683

Felczak MM & Kaguni JM (2004) The Box VII Motif of Escherichia coli DnaA Protein

Is Required for DnaA Oligomerization at the E. coli Replication Origin. J. Biol.

Chem. 279: 51156–51162

Felczak MM, Simmons LA & Kaguni JM (2005) An Essential Tryptophan of

Escherichia coli DnaA Protein Functions in Oligomerization at the E. coli

Replication Origin. J. Biol. Chem. 280: 24627–24633

Fujikawa N (2003) Structural basis of replication origin recognition by the DnaA

protein. Nucleic Acids Res. 31: 2077–2086

Grimwade JE & Leonard AC (2021) Blocking, Bending, and Binding: Regulation of

Initiation of Chromosome Replication During the Escherichia coli Cell Cycle by

59

Transcriptional Modulators That Interact With Origin DNA. Front. Microbiol. 12:

732270

Hayashi C, Miyazaki E, Ozaki S, Abe Y & Katayama T (2020) DnaB helicase is

recruited to the replication initiation complex via binding of DnaA domain I to the

lateral surface of the DnaB N-terminal domain. J. Biol. Chem. 295: 11131–11143

Hizver J, Rozenberg H, Frolow F, Rabinovich D & Shakked Z (2001) DNA bending by

an adenine–thymine tract and its role in gene regulation. Proc. Natl. Acad. Sci.

U.S.A. 98: 8490–8495

Hwang DS & Kornberg A (1992a) Opposed actions of regulatory proteins, DnaA and

IciA, in opening the replication origin of Escherichia coli. J. Biol. Chem. 267:

23087–91

Hwang DS & Kornberg A (1992b) Opening of the replication origin of Escherichia coli

by DnaA protein with protein HU or IHF. J. Biol. Chem. 267: 23083–6

Jaworski P, Donczew R, Mielke T, Weigel C, Stingl K & Zawilak-Pawlik A (2018)

Structure and Function of the Campylobacter jejuni Chromosome Replication

Origin. Front. Microbiol. 9: 1–18

Jaworski P, Zyla-Uklejewicz D, Nowaczyk-Cieszewska M, Donczew R, Mielke T,

Weigel C & Zawilak-Pawlik A (2021) Putative Cooperative ATP–DnaA Binding

to Double-Stranded DnaA Box and Single-Stranded DnaA-Trio Motif upon

Helicobacter pylori Replication Initiation Complex Assembly. Int. J. Mol. Sci. 22:

6643

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool

K, Bates R, Žídek A, Potapenko A, et al (2021) Highly accurate protein structure

prediction with AlphaFold. Nature 596: 583–589

Kaguni JM (2011) Replication initiation at the Escherichia coli chromosomal origin.

Curr. Opin. Chem. Biol. 15: 606–613

Kamashev D, Agapova Y, Rastorguev S, Talyzina AA, Boyko KM, Korzhenevskiy DA,

Vlaskina A, Vasilov R, Timofeev VI & Rakitina T V. (2017) Comparison of

histone-like HU protein DNA-binding properties and HU/IHF protein sequence

alignment. PLoS One 12: e0188037

60

Katayama T, Kasho K & Kawakami H (2017) The DnaA Cycle in Escherichia coli:

Activation, Function and Inactivation of the Initiator Protein. Front. Microbiol. 8:

2496

Kawakami H, Keyamura K & Katayama T (2005) Formation of an ATP-DnaA-specific

Initiation Complex Requires DnaA Arginine 285, a Conserved Motif in the AAA+

Protein Family. J. Biol. Chem. 280: 27420–27430

Keyamura K, Abe Y, Higashi M, Ueda T & Katayama T (2009) DiaA Dynamics Are

Coupled with Changes in Initial Origin Complexes Leading to Helicase Loading. J.

Biol. Chem. 284: 25038–25050

Kumar S, Farhana A & Hasnain SE (2009) In-Vitro Helix Opening of M. tuberculosis

oriC by DnaA Occurs at Precise Location and Is Inhibited by IciA Like Protein.

PloS One 4: e4139

Kuwabara T & Igarashi K (2020) Thermotogales origin scenario of eukaryogenesis. J.

Theor. Biol. 492: 110192

Lopez P, Forterre P, le Guyader H & Philippe H (2000) Origin of replication of

Thermotoga maritima. Trends Genetics 16: 59–60

Mack DR, Chiu TK & Dickerson RE (2001) Intrinsic bending and deformability at the

T-A step of CCTTTAAAGG: a comparative analysis of T-A and A-T steps within

A-tracts. J. Biol. Chem. 312: 1037–49

Majka J, Zakrzewska-Czerwiñska J & Messer W (2001) Sequence Recognition,

Cooperative Interaction, and Dimerization of the Initiator Protein DnaA of

Streptomyces. J. Biol. Chem. 276: 6243–6252

McGarry KC, Ryan VT, Grimwade JE & Leonard AC (2004) Two discriminatory

binding sites in the Escherichia coli replication origin are required for DNA strand

opening by initiator DnaA-ATP. Proc. Natl. Acad. Sci. U.S.A. 101: 2811–2816

Miyoshi K, Tatsumoto Y, Ozaki S & Katayama T (2021) Negative feedback for DARS2

–Fis complex by ATP–DnaA supports the cell cycle-coordinated regulation for

chromosome replication. Nucleic Acids Res. 49: 12820–12835

Noguchi Y, Sakiyama Y, Kawakami H & Katayama T (2015) The Arg Fingers of Key

DnaA Protomers Are Oriented Inward within the Replication Origin oriC and

61

Stimulate DnaA Subcomplexes in the Initiation Complex. J. Biol. Chem.290:

20295–20312

Nozaki S & Ogawa T (2008) Determination of the minimum domain II size of

Escherichia coli DnaA protein essential for cell viability. Microbiology 154: 3379–

3384

Ozaki S (2019) Regulation of replication initiation: lessons from Caulobacter

crescentus Genes Genet. Syst. 94: 183–196

Ozaki S, Fujimitsu K, Kurumizaka H & Katayama T (2006) The DnaA homolog of the

hyperthermophilic eubacterium Thermotoga maritima forms an open complex with

a minimal 149-bp origin region in an ATP-dependent manner. Genes Cells 11:

425–438

Ozaki S & Katayama T (2009) DnaA structure, function, and dynamics in the initiation

at the chromosomal origin. Plasmid 62: 71–82

Ozaki S & Katayama T (2012) Highly organized DnaA– oriC complexes recruit the

single-stranded DNA for replication initiation. Nucleic Acids Res. 40: 1648–1665

Ozaki S, Kawakami H, Nakamura K, Fujikawa N, Kagawa W, Park S-Y, Yokoyama S,

Kurumizaka H & Katayama T (2008) A Common Mechanism for the ATP-DnaAdependent Formation of Open Complexes at the Replication Origin. J. Biol. Chem.

283: 8351–8362

Ozaki S, Noguchi Y, Hayashi Y, Miyazaki E & Katayama T (2012) Differentiation of

the DnaA-oriC Subcomplex for DNA Unwinding in a Replication Initiation

Complex. J. Biol. Chem. 287: 37458–37471

Pei H, Liu J, Li J, Guo A, Zhou J & Xiang H (2007) Mechanism for the TtDnaA-TtoriC cooperative interaction at high temperature and duplex opening at an unusual

AT-rich region in Thermoanaerobacter tengcongensis. Nucleic Acids Res. 35:

3087–3099

Richardson TT, Harran O & Murray H (2016) The bacterial DnaA-trio replication

origin element specifies single-stranded DNA initiator binding. Nature 534: 412–

416

62

Richardson TT, Stevens D, Pelliciari S, Harran O, Sperlea T & Murray H (2019)

Identification of a basal system for unwinding a bacterial chromosome origin.

EMBO J. 38: e101649

Rozgaja TA, Grimwade JE, Iqbal M, Czerwonka C, Vora M & Leonard AC (2011) Two

oppositely oriented arrays of low-affinity recognition sites in oriC guide

progressive binding of DnaA during Escherichia coli pre-RC assembly. Mol.

Microbiol. 82: 475–488

Ryan VT, Grimwade JE, Nievera CJ & Leonard AC (2002) IHF and HU stimulate

assembly of pre-replication complexes at Escherichia coli oriC by two different

mechanisms. Mol. Microbiol. 46: 113–124

Sakiyama Y, Kasho K, Noguchi Y, Kawakami H & Katayama T (2017) Regulatory

dynamics in the ternary DnaA complex for initiation of chromosomal replication in

Escherichia coli. Nucleic Acids Res. 45: 12354–12373

Sakiyama Y, Nagata M, Yoshida R, Kasho K, Ozaki S & Katayama T (2022) Concerted

actions of DnaA complexes with DNA-unwinding sequences within and flanking

replication origin oriC promote DnaB helicase loading. J. Biol. Chem.298: 102051

Schaper S & Messer W (1995)

Interaction of the Initiator Protein DnaA of Escherichia coli with Its DNA Target.

J. Biol. Chem.29:17622-17626

Shimizu M, Noguchi Y, Sakiyama Y, Kawakami H, Katayama T & Takada S (2016)

Near-atomic structural model for bacterial DNA replication initiation complex and

its functional insights. Proc. Natl. Acad. Sci. U.S.A. 113: E8021–E8030

Simmons LA, Felczak M & Kaguni JM (2003) DnaA Protein of Escherichia coli:

oligomerization at the E. coli chromosomal origin is required for initiation and

involves specific N-terminal amino acids. Mol. Microbiol. 49: 849–58

Soman A, Liew CW, Teo HL, Berezhnoy N V, Olieric V, Korolev N, Rhodes D &

Nordenskiöld L (2021) The human telomeric nucleosome displays distinct

structural and dynamic properties. Nucleic Acids Res. 48: 5383–5396

63

Sugiyama R, Kasho K, Miyoshi K, Ozaki S, Kagawa W, Kurumizaka H & Katayama T

(2019) A novel mode of DnaA-DnaA interaction promotes ADP dissociation for

reactivation of replication initiation activity. Nucleic Acids Res. 47: 11209–11224

Sutton MD, Carr KM, Vicente M & Kaguni JM (1998) Escherichia coli DnaA protein.

The N-terminal domain and loading of DnaB helicase at the E. coli chromosomal

origin. J. Biol. Chem. 273: 34255–62

Swinger KK & Rice PA (2004) IHF and HU: flexible architects of bent DNA. Curr.

Opin. Struct. Biol. 14: 28–35

Wegrzyn K, Fuentes-Perez ME, Bury K, Rajewska M, Moreno-Herrero F & Konieczny

I (2014) Sequence-specific interactions of Rep proteins with ssDNA in the AT-rich

region of the plasmid replication origin. Nucleic Acids Res. 42: 7807–7818

Wolański M, Donczew R, Zawilak-Pawlik A & Zakrzewska-Czerwińska J (2015) oriCencoded instructions for the initiation of bacterial chromosome replication. Front.

Microbiol. 5: 735

Yoshida R, Ozaki S, Kawakami H & Katayama T (2023) Single-stranded DNA

recruitment mechanism in replication origin unwinding by DnaA initiator protein

and HU, an evolutionary ubiquitous nucleoid protein. Nucleic Acids Res.

Young RT, Czapla L, Wefers ZO, Cohen BM & Olson WK (2022) Revisiting DNA

Sequence-Dependent Deformability in High-Resolution Structures: Effects of

Flanking Base Pairs on Dinucleotide Morphology and Global Chain Configuration.

Life 12: 759

Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT,

Nelson KE, Nesbø CL, Doolittle WF, Gogarten JP, et al (2009) On the chimeric

nature, thermophilic origin, and phylogenetic placement of the Thermotogales.

Proc. Natl. Acad. Sci. U.S.A. 106: 5865–5870

64

Publication list

Lu, C., Yoshida, R., Katayama, T., & Ozaki, S. (2023). Thermotoga maritima oriC

involves a DNA unwinding element with distinct modules and a DnaA-oligomerizing

region with a novel directional binding mode. J. Biol. Chem., 104888. In Press.

65

Acknowledgement

This study was performed in the laboratory of Molecular Biology under supervision

of Assoc. Prof. Shogo Ozaki and Prof. Tsutomu Katayama. I thank Kenya, M., Ryusei,

Y. and Yasutaka, W. for their valid suggestions in this study.

66

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る